All published articles of this journal are available on ScienceDirect.

RESEARCH ARTICLE

Recognition Method of Limb Motor Imagery EEG Signals Based on Integrated Back-propagation Neural Network

The Open Biomedical Engineering Journal 31 Mar 2015 RESEARCH ARTICLE DOI: 10.2174/1874120701509010083

Abstract

In this paper, in order to solve the existing problems of the low recognition rate and poor real-time performance in limb motor imagery, the integrated back-propagation neural network (IBPNN) was applied to the pattern recognition research of motor imagery EEG signals (imagining left-hand movement, imagining right-hand movement and imagining no movement). According to the motor imagery EEG data categories to be recognized, the IBPNN was designed to consist of 3 single three-layer back-propagation neural networks (BPNN), and every single neural network was dedicated to recognizing one kind of motor imagery. It simplified the complicated classification problems into three mutually independent two-class classifications by the IBPNN. The parallel computing characteristic of IBPNN not only improved the generation ability for network, but also shortened the operation time. The experimental results showed that, while comparing the single BPNN and Elman neural network, IBPNN was more competent in recognizing limb motor imagery EEG signals. Also among these three networks, IBPNN had the least number of iterations, the shortest operation time and the best consistency of actual output and expected output, and had lifted the success recognition rate above 97 percent while other single network is around 93 percent.

Keywords: IBPNN, motor imagery, EEG, recognition, BPNN, Elman neural network.
Fulltext HTML PDF
1800
1801
1802
1803
1804