Thermostability of Biological Systems: Fundamentals, Challenges, and Quantification

All published articles of this journal are available on ScienceDirect.

RESEARCH ARTICLE

Thermostability of Biological Systems: Fundamentals, Challenges, and Quantification

Xiaoming He, * Open Modal
Authors Info & Affiliations
The Open Biomedical Engineering Journal 12 Apr 2011 RESEARCH ARTICLE DOI: 10.2174/1874120701105010047

Abstract

This review examines the fundamentals and challenges in engineering/understanding the thermostability of biological systems over a wide temperature range (from the cryogenic to hyperthermic regimen). Applications of the bio-thermostability engineering to either destroy unwanted or stabilize useful biologicals for the treatment of diseases in modern medicine are first introduced. Studies on the biological responses to cryogenic and hyperthermic temperatures for the various applications are reviewed to understand the mechanism of thermal (both cryo and hyperthermic) injury and its quantification at the molecular, cellular and tissue/organ levels. Methods for quantifying the thermophysical processes of the various applications are then summarized accounting for the effect of blood perfusion, metabolism, water transport across cell plasma membrane, and phase transition (both equilibrium and non-equilibrium such as ice formation and glass transition) of water. The review concludes with a summary of the status quo and future perspectives in engineering the thermostability of biological systems.

Key Words: Thermotherapy, thermoablation, cryotherapy, cryoablation, cryosurgery, hyperthermia, cryopreservation, vitrification, desiccation, lyopreservation, freeze-drying, membrane, vascular injury, stasis, cell injury, protein denaturation, phase transition, intracellular ice formation (IIF), water transport, glass transition, blood perfusion, kinetics, nanotechnology..