All published articles of this journal are available on ScienceDirect.

RESEARCH ARTICLE

Numerical Computational Study of Photoacoustic Signals from Eye Models to Detect Diabetic Retinopathy

The Open Biomedical Engineering Journal 23 Apr 2020 RESEARCH ARTICLE DOI: 10.2174/1874120702014010011

Abstract

Introduction:

Detection of Diabetic Retinopathy (DR) is essential in clinical ophthalmology as it may prevent sight degradation. In this paper, a complete Photoacoustic (PA) analysis is implemented to detect DR in three different eye models representing a healthy eye as well as two abnormal eyes exhibiting Non-Proliferative Retinopathy (NPDR), and Proliferative Retinopathy (PDR)

Methods & Materials:

Monte Carlo method was used to simulate the interaction of a 0.8 ns duration laser pulse with eye tissues at 750 nm wavelength. Thermal, structural and acoustical analyses were performed using the Finite Element Method (FEM).

Results:

The results showed that there is a significant change in the amplitude of the detected PA signal for abnormal eye tissues in the retina (P < 0.05) as compared to healthy eye tissues. The maximum amplitude of the received PA signal in the NPDR and the PDR eye models is 5% and 33%, respectively, which are greater than those observed in the healthy eye.

Conclusion:

These results may provide insights into using PA imaging to detect DR.

Keywords: Diabetic Retinopathy (DR), Photoacoustic (PA) Analysis, Non-Proliferative Retinopathy (NPDR), Photoacoustic signals, Monte carlo method, Acoustical analyses.
Fulltext HTML PDF ePub
1800
1801
1802
1803
1804