All published articles of this journal are available on ScienceDirect.

RESEARCH ARTICLE

MRI Brain Tumor Segmentation using Cuckoo-based Dimensionality Reduction and Ensemble Convolutional Neural Network

The Open Biomedical Engineering Journal 03 July 2024 RESEARCH ARTICLE DOI: 10.2174/0118741207290221240318063349

Abstract

Background

Brain tumor identification at an early stage is a challenging task that increases the lifetime of patients. Specialists' conclusions on recognizing brain tumors are difficult, as they are based on their theoretical knowledge. It takes a huge amount of time to diagnose the patient. Recently, research has suggested an automated technique that is dependent on convolutional neural networks. Medical pictures are a set of accumulations of data that are hard to store and process, expending broad registering time. The decreased infiltrated systems are normally utilized as an information pre-preparing venture to make the picture information less mind-boggling with the goal that high-dimensional information may be recognized by a fitting and apt low-dimensional portrayal.

Objective

This study proposes an optimization-based dimensionality reduction and brain tumor segmentation using ensemble convolutional neural networks in MRI images to enhance disease diagnosis and extend healthcare accessibility.

Methods

Cuckoo-based dimensionality reduction and Ensemble CNN are proposed to segment the tumor region . The cuckoo-based optimization search technique is used to reduce the dimensionality of MRI Brain Images to perform better segmentation. The proposed technique is evaluated on the BRATS database, which contains two datasets: the Leaderboard and Challenge datasets. The outcomes are estimated utilizing the Dice Similarity Coefficient (DSC), Positive Predictive Value (PPV), and Sensitivity.

Results

The Experimental analysis shows promising results on the leaderboard dataset and the BRATS Challenge dataset. The proposed method outperformed the leaderboard dataset with a greater 91% Dice Similarity Coefficient (DCE), 95% Positive Predictive Value, and 87% Sensitivity of High-Grade Glioma (HGG). Seventy-two percent Dice Similarity Coefficient (DCE), 70% Positive Predictive Value, and 93% Sensitivity of Low-Grade Glioma (LGG). 88% Dice Similarity Coefficient (DCE), 90% Positive Predictive Value, and 91% Sensitivity of combined High-Grade glioma and Low-Grade glioma. For the BRATS Challenge dataset, the proposed method provides a 92% Dice Similarity Coefficient (DCE), 93% Positive Predictive Value, and 95% Sensitivity of High-Grade Glioma (HGG). 86% Dice Similarity Coefficient (DCE), 88% Positive Predictive Value and 93% Sensitivity of Low-Grade glioma (LGG). 85% Dice Similarity Coefficient (DCE), 89% Positive Predictive Value, and 92% Sensitivity of combined High-Grade glioma and Low-Grade glioma.

Conclusion

In this study, MRI Brain tumor segmentation using Cuckoo-based dimensionality reduction and Ensemble Convolutional Neural Network is proposed. The cuckoo search algorithm used for dimensionality reduction is performed in MRI images to reduce the dimensions. We also compared two of the existing methods with our proposed method. The leaderboard dataset and challenge dataset have been discussed. The challenge dataset for HGG provided good results in terms of dice similarity coefficient and positive predictive value. The sensitivity alone gets reduced when compared with the CNN and random forest methods. Experimental analysis shows promising results on the leaderboard dataset and the BRATS Challenge dataset.

Keywords: Ensemble convolutional neural networks (ECNN), Segmentation, High-grade glioma, Low-grade glioma, Dimensionality reduction, MRI.
Fulltext HTML PDF ePub
1800
1801
1802
1803
1804