All published articles of this journal are available on ScienceDirect.
A Telecare System for Use in Traditional Persian Medicine
Abstract
Background:
In Persian Medicine (PM), measuring the wrist temperature/humidity and pulse is one of the main methods for determining a person's health status and temperament. An important problem is the dependence of the diagnosis on the physician's interpretation of the above-mentioned criteria. Perhaps this is one reason why this method has yet to be combined with modern medical methods. Also, sometimes there is a need to use PM to diagnose patients remotely, especially during a pandemic. This brings up the question of how to implement PM into a telecare system. This study addresses these concerns and outlines a system for measuring pulse signals and temperament detection based on PM.
Methods:
A system was designed and clinically implemented based on PM that uses data from recorded thermal distribution, a temperament questionnaire, and a customized device that logs the pulse waves on the wrist. This system was used for patient care via telecare.
Results:
The temperaments of 34 participants were assessed by a PM specialist using the standardized Mojahedi Mizaj Questionnaire (MMQ). Thermal images of the wrist in the supine position (named Malmas in PM), the back of the hand, and the entire face were also recorded under the supervision of the physician. Also, the wrist pulse waves were evaluated by a customized pulse measurement device. Finally, the collected data could be sent to a physician via a telecare system for further interpretation and prescription of medications.
Conclusion:
This preliminary study focused on the implementation of a combinational hardware-software system for patient assessment based on PM. It appears that the design and construction of a customized device that can measure the pulse waves, and some other criteria, according to PM, is possible and can decrease the dependency of the diagnostic to PM specialists. Thus, it can be incorporated into a telemedicine system.