RESEARCH ARTICLE


The Effect of Strain Hardening on the Dynamic Response of Human Artery Segments



Haralambia P. Charalambous1, Panayiotis C. Roussis1, *, Antonios E. Giannakopoulos2
1 Department of Civil & Environmental Engineering, University of Cyprus, Nicosia, Cyprus
2 Department of Civil Engineering, University of Thessaly, Volos, Greece


Article Metrics

CrossRef Citations:
0
Total Statistics:

Full-Text HTML Views: 3279
Abstract HTML Views: 940
PDF Downloads: 664
ePub Downloads: 474
Total Views/Downloads: 5357
Unique Statistics:

Full-Text HTML Views: 1197
Abstract HTML Views: 605
PDF Downloads: 358
ePub Downloads: 212
Total Views/Downloads: 2372



© 2017 Charalambous et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Department of Civil & Environmental Engineering, University of Cyprus, Nicosia, Cyprus 1 Panepistimiou Avenue, 2109 Nicosia, Cyprus, Tel: +357 22892210; E-mail: roussis@ucy.ac.cy


Abstract

Background:

When subjected to time-dependent blood pressure, human arteries undergo large deformations, exhibiting mainly nonlinear hyperelastic type of response. The mechanical response of arteries depends on the health of tissues that comprise the artery walls. Typically, healthy arteries exhibit convex strain hardening under tensile loads, atherosclerotic parts exhibit stiffer response, and aneurysmatic parts exhibit softening response. In reality, arterial dynamics is the dynamics of a propagating pulse, originating in heart ventricle, propagating along aorta, bifurcating, etc. Artery as a whole cannot be simulated as a lump ring, however its cross section can be simulated as a vibrating ring having a phase lag with respect to the other sections, creating a running pressure wave. A full mathematical model would require fluid-solid interaction modeling continuity of blood flow in a compliant vessel and a momentum equation. On the other hand, laboratory testing often uses small-length arteries, the response of which is covered by the present work. In this way, material properties that change along the artery length can be investigated.

Objective:

The effect of strain hardening on the local dynamic response of human arteries (excluding the full fluid-structure interaction) is examined through appropriate hyperelastic models related to the health condition of the blood vessel. Furthermore, this work aims at constituting a basis for further investigation of the dynamic response of arteries accounting for viscosity.

Method:

The governing equation of motion is formulated for three different hyperelastic material behaviors, based on the constitutive law proposed by Skalak et al., Hariton, and Mooney-Rivlin, associated with the hardening behavior of healthy, atherosclerotic, and aneurysmatic arteries, respectively. The differences between these modelling implementations are caused by physiology, since aneurysmatic arteries are softer and often sclerotic arteries are stiffer than healthy arteries. The response is investigated by proper normalization of the involved material parameters of the arterial walls, geometry of the arteries, load histories, time effects, and pre-stressing. The effect of each problem parameter on the arterial response has been studied. The peak response of the artery segment is calculated in terms of radial displacements, principal elongations, principal stresses, and strain-energy density. The validity of the proposed analytical models is demonstrated through comparison with previous studies that investigate the dynamic response of arterial models.

Results:

Important metrics that can be useful to vascular surgery are the radial deformation and the maximum strain-energy density along with the radial resonance frequencies. These metrics are found to be influenced heavily by the nonlinear strain-hardening characteristics of the model and the longitudinal pre-stressing.

Conclusion:

The proposed formulation permits a systematic and generalizable investigation, which, together with the low computational cost of analysis, makes it a valuable tool for calculating the response of healthy, atherosclerotic, and aneurysmatic arteries. The radial resonance frequencies can explain certain murmures developed in stenotic arteries.

Keywords: Hyperelastic arterial model, Human artery segments, Strain hardening, Dynamic analysis, Energy density.