RESEARCH ARTICLE


Noninvasive Fetal Electrocardiography Part II: Segmented-Beat Modulation Method for Signal Denoising



Angela Agostinelli1, Agnese Sbrollini1, Luca Burattini2, Sandro Fioretti1, Francesco Di Nardo1, Laura Burattini1, *
1 Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
2 Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy


Article Metrics

CrossRef Citations:
21
Total Statistics:

Full-Text HTML Views: 1122
Abstract HTML Views: 528
PDF Downloads: 211
ePub Downloads: 175
Total Views/Downloads: 2036
Unique Statistics:

Full-Text HTML Views: 601
Abstract HTML Views: 332
PDF Downloads: 171
ePub Downloads: 149
Total Views/Downloads: 1253



Creative Commons License
© 2017 Agostinelli et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona (AN), Italy; Tel: +39 071 220 4461; Fax: +39 071 220 4224; E-mail: l.burattini@univpm.it


Abstract

Background:

Fetal well-being evaluation may be accomplished by monitoring cardiac activity through fetal electrocardiography. Direct fetal electrocardiography (acquired through scalp electrodes) is the gold standard but its invasiveness limits its clinical applicability. Instead, clinical use of indirect fetal electrocardiography (acquired through abdominal electrodes) is limited by its poor signal quality.

Objective:

Aim of this study was to evaluate the suitability of the Segmented-Beat Modulation Method to denoise indirect fetal electrocardiograms in order to achieve a signal-quality at least comparable to the direct ones.

Method:

Direct and indirect recordings, simultaneously acquired from 5 pregnant women during labor, were filtered with the Segmented-Beat Modulation Method and correlated in order to assess their morphological correspondence. Signal-to-noise ratio was used to quantify their quality.

Results:

Amplitude was higher in direct than indirect fetal electrocardiograms (median:104 µV vs. 22 µV; P=7.66·10-4), whereas noise was comparable (median:70 µV vs. 49 µV, P=0.45). Moreover, fetal electrocardiogram amplitude was significantly higher than affecting noise in direct recording (P=3.17·10-2) and significantly in indirect recording (P=1.90·10-3). Consequently, signal-to-noise ratio was initially higher for direct than indirect recordings (median:3.3 dB vs. -2.3 dB; P=3.90·10-3), but became lower after denoising of indirect ones (median:9.6 dB; P=9.84·10-4). Eventually, direct and indirect recordings were highly correlated (median: ρ=0.78; P<10-208), indicating that the two electrocardiograms were morphologically equivalent.

Conclusion:

Segmented-Beat Modulation Method is particularly useful for denoising of indirect fetal electrocardiogram and may contribute to the spread of this noninvasive technique in the clinical practice.

Keywords: Abdominal fetal electrocardiography, Direct fetal electrocardiography, Digital electrocardiography, Fetal monitoring, Segmented-beat modulation method, Nonlinear filtering.