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Abstract: Cerebral Flow Autoregulation (CFA) is the dynamic process by which cerebral blood flow is maintained within 

physiologically acceptable bounds during fluctuations of cerebral perfusion pressure. The distinction is made with “static” 

flow autoregulation under steady-state conditions of perfusion pressure, described by the celebrated “autoregulatory 

curve” with a homeostatic plateau. This paper studies the dynamic CFA during changes in perfusion pressure, which 

attains critical clinical importance in patients with stroke, traumatic brain injury and neurodegenerative disease with a 

cerebrovascular component. Mathematical and computational models have been used to advance our quantitative 

understanding of dynamic CFA and to elucidate the underlying physiological mechanisms by analyzing the relation 

between beat-to-beat data of mean arterial blood pressure (viewed as input) and mean cerebral blood flow velocity(viewed 

as output) of a putative CFA system. Although previous studies have shown that the dynamic CFA process is nonlinear, 

most modeling studies to date have been linear. It has also been shown that blood CO2 tension affects the CFA process. 

This paper presents a nonlinear modeling methodology that includes the dynamic effects of CO2 tension (or its surrogate, 

end-tidal CO2) as a second input and quantifies CFA from short data-records of healthy human subjects by use of the 

modeling concept of Principal Dynamic Modes (PDMs). The PDMs improve the robustness of the obtained nonlinear 

models and facilitate their physiological interpretation. The results demonstrate the importance of including the CO2 input 

in the dynamic CFA study and the utility of nonlinear models under hypercapnic or hypocapnic conditions. 
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I. INTRODUCTION 

 The quantitative study of cerebral haemodynamics has 
been confounded by the fact that cerebral blood flow 
variations depend on multiple physiological factors. 
Variations in cerebral perfusion pressure (CPP) are viewed 
as a key factor affecting variations in cerebral blood flow, 
although many other physiological variables influence the 
latter. Among them, the effects of blood CO2 tension have 
been shown to be significant. Thus, we have included in our 
studies the dynamic effects of variations in blood CO2 
tension (or its surrogate, the end-tidal CO2) as another 
variable modulating dynamic cerebral flow autoregulation 
(CFA). The latter is defined as the physiological process by 
which variations in cerebral blood flow are kept within 
physiologically acceptable bounds in the presence of 
variations in CPP (or systemic arterial blood pressure).  

 Since CFA is of vital importance for survival and the 
proper functioning of the brain, it has received considerable 
attention for many years starting with the pioneering work of 
Lassen [1] and Fog [2]. Head injury and subarachnoid 
haemorrhage can impair CFA and worsen neurological 
outcome [3-7]. Impaired CFA may also impede recovery 
from acute stroke [8, 9] and lead to brain edema  
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or hypertensive encephalopathy when CPP is persistently 
high, and hypoperfusion or cerebral ischemia when CPP is 
persistently low [10]. Furthermore, changes in 
cerebrovascular resistance and compliance (i.e. frequency-
dependent impedance or, its inverse, admittance) have been 
associated with hypertension, diabetes, atherosclerosis, 
dyslipidemia [8, 11-14] and other cardiovascular risk factors, 
including ageing and neuro-degenerative processes [15, 16]. 
The extent to which these cerebrovascular changes are 
related to dysfunction of CFA remains an open question of 
great clinical importance [13].  

 CFA generally depends on the cerebrovascular 
characteristics and the proper function of the neurovascular 
unit, including intrinsic and autonomic neural activities [17, 
18]. Its assessment in human subjects requires direct or 
indirect measurements of CPP, which are often 
approximated by measurements of systemic arterial blood 
pressure and localized cerebral blood flow velocity using 
various imaging or Doppler modalities [3, 19]. For example, 
beat-to-beat changes in arterial pressure can be measured 
non-invasively via finger photoplethysmography that can be 
related to CPP by reference to intracranial pressure (if 
available). The cerebral blood flow velocity is typically 
measured at the middle cerebral artery via trans-cranial 
Doppler [20-23] and can be related to changes in flow by 
reference to the arterial lumen cross-sectional area [24]. 
Assuming that the latter remains relatively constant through 
time, the measured changes in flow velocity are accepted as 
a surrogate for changes in flow [25, 26]. In the steady-state, 
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the concept of “static” CFA has emerged in the form of the 
“autoregulatory curve” exhibiting a flow plateau demarcated 
by two flexion points (upper and lower limit of the plateau) 
[27]. However, this static curve reveals no temporal 
information on how blood flow responds to changes in 
arterial blood pressure. Thus, recent interest has focused on 
“dynamic” CFA that refers to the relation between 
continuous variations in blood pressure and flow. Several 
other physiological variables have been known to affect the 
cerebral vasculature directly – e.g. CO2 tension and hypoxia 
[28, 29], adenosine, hydrogen or potassium ions [30]. The 
vascular regulatory mechanisms of CFA are rather 
complicated and include the effects of the myogenic 
mechanism [31], flow-mediated endothelial mechanisms 
[32] and perivascular innervation [33-37]. A number of 
“autoregulatory indices” have been proposed in a clinical 
context for the assessment of CFA in human subjects that 
result either from static measures of cerebral flow and 
arterial pressure [16, 38, 39] or dynamic measures [20, 40-
42]. 

 Several studies of dynamic CFA have obtained the 
frequency-dependent cerebrovascular “impedance” (or its 
inverse “admittance”) through Fourier analysis of the time-
series of beat-to-beat changes in mean arterial blood pressure 
(MABP) and mean cerebral blood flow velocity (MCBFV) 
over each R-R interval [41, 43, 44]. The model used in those 
studies is a putative linear system defined by MABP as the 
“input” and MCBFV as the “output”. Its admittance function 
showed high gain in the 0.07-0.15 Hz and 0.2-0.3 Hz 
frequency ranges and a reduction of gain for frequencies 
below 0.07 Hz, a fact interpreted as the effect of CFA over 
this frequency range [43]. It was also observed that the 
coherence function between changes in MABP and MCBFV 
was reduced below 0.07 Hz, a fact that was interpreted as 
indicative of intrinsic nonlinearities and/or nonstationarities 
in this frequency range [43]. Time-domain analysis using 
cross-correlation functions [45], Auto-Regressive Moving-
Average models [46] and Impulse Response Functions have 
also provided some useful insights [47].  

 The observation of low linear coherence and the fact that 
the static “autoregulatory curve” is nonlinear, provided the 
motivation for nonlinear modeling studies of dynamic CFA 
using the nonparametric input-output Volterra approach [17, 
47-50]. These studies quantified the intrinsic nonlinearities 
of CFA and showed that they reside primarily in the 
frequency range below 0.07 Hz, where reduced linear 
coherence was previously observed. The studies have also 
shown that an additional protagonist of CFA is the CO2 
tension in the blood, measured indirectly through end-tidal 
CO2 (ETCO2), which modulates the pressure-flow 
relationship, especially in the low-frequency range from 0.02 
to 0.08 Hz [17, 49]. The modeling of this modulatory action 
represents a quantification of CO2 vasomotor reactivity and 
its interactions with vascular impedance. The characteristics 
of these dynamic interactions were shown to be altered by 
orthostatic stress (simulated with low body negative 
pressure) and pharmaceutical interventions affecting 
autonomic neural activity [17, 50]. It must be noted that 
these findings were made possible by the extension of 
Volterra-type dynamic nonlinear modeling to two inputs 
(MABP and ETCO2). These dynamic nonlinear models have 
the potential to explore whether the celebrated homeostatic 

mechanism of static CFA represented by the nonlinear 
“autoregulatory curve” can be extended to the broader notion 
of a “homeodynamic” mechanism pertinent to dynamic 
CFA. The ultimate goal is to elucidate the underlying 
physiological mechanisms in order to advance our 
understanding of cerebral blood flow autoregulation and 
improve clinical diagnostic and therapeutic procedures.  

 It is now evident that the underlying physiological 
complexity of CFA requires dynamic nonlinear modeling 
methods in a multivariate context, using at least two inputs: 
MABP and ETCO2. The key notion is that the dynamic 
interactions between the frequency-dependent vascular 
impedance/admittance and the CO2 vasomotor reactivity can 
be quantified through these nonlinear models. This 
represents a significant advance in our understanding and 
quantification of the CFA system – one that will naturally 
require a long maturation process – but it also presents a 
formidable challenge.  

 This paper presents a recent variant of efficient Volterra 
modeling that can be effective for this purpose. This variant 
utilizes the concept of Principal Dynamic Modes (PDMs) 
which has been developed in recent years and applied 
successfully to various physiological domains [51]. The 
criterion for comparing the PDM-based approach with other 
approaches used before, is two-fold: (a) the predictive 

capability of the respective models, provided that the 
number of free parameters in each model is not more than 
20% of the number of data samples (to prevent over-fitting); 
and (b) the interpretability of the obtained models. The 
PDM-based modeling methodology is effective with short 
data-records, thus suitable for nonstationarities in the time-
scale of a few minutes (as in the case of CFA). It was applied 
to beat-to-beat time-series of MABP and MCBFV and 
breath-to-breath ETCO2 data from 12 normal subjects that 
were recorded over 6-min. The obtained models allow 
examination of the intrinsic nonlinearities of the CFA system 
in a manner that is expected to advance our understanding of 
the fundamental regulatory aspects of cerebral 
haemodynamics, including eventually the mechanisms of 
endothelial and neural processes, as well as the neuronal-
vascular coupling relationship. The PDM-based model 
allows the reliable assessment of the effects of various 
physiological or pathophysiological conditions on CFA in a 
manner not possible heretofore. Thus, it has the potential to 
advance the clinical care of patients with cerebrovascular 
disease.  

II. METHODS 

A. Experimental Methods 

 Twelve healthy subjects with mean (standard deviation) 
age of 37 (9) years voluntarily participated in this study and 
signed the Informed Consent Form that has been approved 
by the Institutional Review Boards of the University of 
Texas Southwestern Medical Center and Texas Health 
Presbyterian Hospital Dallas, where the data were collected 
as continuous recordings at the Institute for Exercise and 
Environmental Medicine. The arterial blood pressure was 
measured continuously and noninvasively with finger photo-
plethysmography (Finapres, Ohmeda, Colorado) and the 
cerebral blood flow velocity was measured in the Middle 
Cerebral Artery using a 2 MHz trans-cranial Doppler (TCD) 
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probe (Multiflow, DWL, Germany) placed over the temporal 
window and fixed at constant angle with a custom-made 
holder [20, 23, 43]. The heart rate was monitored by a 12-
lead ECG and the end-tidal CO2 tension was obtained via a 
nasal cannula using a mass spectrometer (Marquette 
Electronics). All experiments were performed in the morning 
in a quiet, environmentally controlled laboratory. After 20 
minutes of supine rest, 6 minutes of recordings were made 
under resting conditions in supine position. These clinical 
measurements are reliable, reproducible, non-invasive, 
inexpensive, safe and comfortable for the subjects.  

B. Data Processing 

 Continuous recordings of data were reduced to beat-to-
beat time-series data by averaging the signals over each RR 
interval and re-sampling the beat-to-beat values at 2 Hz. The 
re-sampled data were subsequently de-meaned and de-
trended by subtracting the 2-min non-causal moving-
average. Finally, we clip outliers in the de-trended signal that 
are more than 3 root-mean-square values away from the zero 
mean. The latter is done in order to protect the modeling 
results from the effects of occasional outliers due to 
measurement errors. Fig. (1) shows illustrative preprocessed 
data, as well as the subtracted moving-average, for subject 
#10. It is evident that very low frequency variations (below 
0.01 Hz) are present in the data but they will not be analyzed 
in this study, because dynamic CA has been traditionally 
studied in the frequency range 0.01-0.50 Hz. 

C. Modeling Methods 

 In this paper, we employ the novel concept of Principal 

Dynamic Modes (PDMs) to obtain reliable dynamic 

nonlinear models of the causal relationship between two 

input signals, mean arterial blood pressure (MABP) and end-

tidal CO2 tension (ETCO2) time-series and the output signal 

of mean cerebral blood flow velocity (MCBFV). The 

preprocessed time-series data over 6 min from 12 subjects in 

supine resting position were preprocessed as described above 

to remove low-frequency trends and clip extreme values due 

to experimental artifacts. The utility of the PDMs is found in 

the fact that they make the models more compact and allow 

their accurate and robust estimation from short data-records. 

The use of PDMs also facilitates the physiological 

interpretation of the obtained model, as will be discussed 

later. We briefly outline below the Volterra modeling 

approach and the proposed PDM-based variant of this 

approach. For the many mathematical and technical details 

of Volterra-type modeling, the reader is referred to the 

monograph [51]. Some background information is given in 
Appendix I. 

 In the Volterra modeling approach, the output is 
expressed in terms of the input(s) by means of a functional 
expansion that represents the hierarchical nonlinear 
interactions among the inputs and among different parts of 
the input epochs as they affect the output (i.e. a 2

nd
 order 

Volterra functional between two inputs represents the 
quantitative pattern by which the two inputs interact in order 
to influence the output). The specific pattern of these 
nonlinear interactions for a given system is codified by the 
respective Volterra “kernels” (i.e. the 2

nd
 order self-kernel 

codifies the interactions between different parts of the epoch 
of the respective input and the 2

nd
 order cross-kernel codifies 

the interactions between two inputs). These kernels convolve 
the respective inputs to form the corresponding Volterra 
functional. The 1

st
 order kernel quantifies the linear 

dynamics of the system and the respective 1
st
 order 

functional represents the linear component of the Volterra 
model prediction. Thus, a linear model or a nonlinear model 
(incorporating a hierarchy of nonlinear functional defined by 
the respective kernels) can be built in each case as 
appropriate. It has been proven mathematically that the 
Volterra formulation is applicable to (almost) all nonlinear 
causal relationships between arbitrary input and output 
signals, with the exception of chaotic processes and non-
dissipating nonlinear oscillations [51-54]. The importance of 
the latter notwithstanding, the Volterra model is general and 
rigorous formulation for all other cases which constitute the 
vast majority.  

 The conceptual and mathematical/computational appeal 
of the Volterra formulation is evident. However, practical 
problems arise from the fact that the high dimensionality of 
the high-order kernels makes their estimation difficult and 
their physiological interpretation daunting. For this reason, 
most applications to date have been limited to 2

nd
 order, with 

only a few attempts for 3
rd

 order modeling, including our 
previous work on renal autoregulation [55, 56]. To mitigate 
this practical limitation, we have utilized kernel expansions 
on the Laguerre basis that simplify the kernel estimation 
problem [51, 57, 58]. Although the use of kernel expansions 
resulted in spectacular estimation benefits, it does not 
remove the “curse of dimensionality” associated with the 
multi-dimensional structure of high-order kernels. The key 
mathematical relations of this modeling approach are 
summarized in Appendix I. 

Fig. (1). Left panels: the preprocessed time-series data of MCBFV (first row), MABP (second row), and ETCO2 (third row) for subject #10 

over 6 min. Middle panels: the subtracted moving-averages. Right panels: the respective spectra of the preprocessed time-series data up to 

0.5 Hz. 
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 We seek to overcome this fundamental practical 
limitation with the introduction of the PDM concept, which 
aims at identifying the minimum set of "basis functions" 
(that are distinct and characteristic for each system) capable 
of representing adequately the system dynamics (i.e. provide 
satisfactory expansions of the system kernels) and, at the 
same time, minimize the importance of cross-terms by 
separating the system nonlinearity into appropriate 
individual nonlinear functions cascaded with the PDMs to 
form collectively the system output. This is equivalent to 
splitting the multi-input static nonlinearity of the Wiener-
Bose model, which was shown to be an equivalent 
formulation of the general Volterra model [52, 54], into 
univariate nonlinear functions associated with each filter in 
the filter-bank used for kernel-expansion [51, 58]. This is 
accomplished by use of Singular Value Decomposition 
(SVD) of a properly constructed rectangular matrix that 
includes the significant eigenvectors of the estimated self-
kernels, as described in detail below. Since the latter 
“separability” of the multi-input static nonlinearity of the 
Wiener-Bose model cannot be guaranteed in all cases, we 
include in the PDM-based model cross-terms that are 
properly selected to capture the most significant interactions 
among the PDM “channels”. The latter is achieved by means 
of SVD of another matrix that is constructed on the basis of 
the estimated cross-kernels and yields pairs of cross-PDMs. 
The structure of the PDM-based Volterra-Wiener model of 
the two-input/one-output CFA system is shown in Fig. (2), 
since three PDMs for each input and two pairs of cross-
PDMs were found to be adequate in this case. Note that these 
PDMs are “global” in the sense that they are obtained from 
the data of all subjects in the reference group and represent a 
“functional coordinate system” (i.e. basis of functions) for 
efficient representation of all Volterra kernels of the CFA 
system, which provide a complete description of the 
dynamic characteristics of this system. The estimated static 
nonlinearities that are associated with each PDM channel 
and the coefficients of the cross-terms are subject-specific 
and can be used to characterize uniquely the CFA process for 
each subject. 

 The proposed methodology commences with the 
estimation of a 2

nd
 order Volterra model of the two-input 

CFA system using Laguerre expansions with the following 
parameters: L1= 5, alpha1= 0.5, L2= 3, alpha2= 0.6, where 
MABP is designated as input #1 and ETCO2 as input #2. 
This results in 45 free parameters (including a constant 
baseline term) for the two-input 2

nd
 order CFA Volterra 

model, which can be adequately supported (in terms of 
statistical estimation) by a minimum of 3 min of data. Then, 
we perform Singular Value Decomposition (SVD) of a 
rectangular matrix for each input composed of the 1

st
 order 

kernels of all subjects in the reference group (4 of the 12 
subjects, randomly selected) and the three most significant 
eigenvectors of their 2

nd
 order self-kernels (resulting from 

eigen-decomposition) weighted by the respective 
eigenvalues in product with the root-mean-square (RMS) 
value of the respective input. We select the three most 
significant “singular vectors” of this matrix (corresponding 
to the three largest “singular values”) for each input as the 
global PDMs for the respective input. The pairs of global 
cross-PDMs are selected by means of SVD of a rectangular 
matrix that is composed of all the estimated 2

nd
 order cross-

kernels of the reference group. The significant singular 
vectors from the “prior” and “posterior” SVD matrices 
(termed U and V in the standard SVD terminology) are 
selected as the pairs of “cross-PDMs” which form the cross-
terms as products of the convolutions of these cross-PDMs 
with the respective inputs. It is important to note that the 
waveforms of the global PDMs and cross-PDMs were not 
affected significantly when different sets of 4 subjects (from 
the full set of 12 subjects) were randomly selected. This fact 
corroborates the premise of the existence of global PDMs 
and cross-PDMs for the CFA system and the potential of the 
PDM-based model to be generalizable in form (i.e. 
applicable) to all subjects.  

 In order to complete the PDM-based nonlinear model, we 

must further estimate the “associated nonlinear function” 

(ANF) for each global PDM, which is a static nonlinearity 

applied to the convolution of the input signal with the 

respective global PDM, as well as the appropriate 

coefficients of the cross-terms that account for the inter-

modulation effects between the two inputs. The model 

output prediction is composed of the sum of all ANF outputs 

and cross-terms, along with a constant baseline value. The 

coefficients of six cubic ANFs (one for each of the six 

PDMs) and of four multiplicative cross-terms (representing 

all combinations of the two pairs of cross-PDMs) are 

estimated for the CFA PDM-based model via least-squares 

fitting of the output equation, along with the constant 

baseline value. The estimated coefficients of the ANFs and 

the cross-terms are distinct for each subject and can be used 

to quantify uniquely its CFA characteristics, offering a 

potential diagnostic tool in future clinical practice. In this 

study, it was found that cubic ANFs and four multiplicative 

cross-terms are adequate for the CFA system. The total 

number of free parameters for this two-input PDM-based 

model is 23 (including the constant baseline term), which 

implies a minimum required data-record of 2 min. By 

comparison, the Laguerre-based 2
nd

 order Volterra model 

(with L1=5, L2=3) has 45 free parameters and, if the self-

kernels are extended to 3
rd

 order (to be comparable with the 

cubic ANFs of the PDM-based model), the number of free 

parameters rises to 90.  

 

Fig. (2). Schematic of the PDM-based model of the CFA system 

with three global PDMs and two pairs of cross-PDMs. 
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 The presented PDM-based modeling methodology can be 
also applied to the single-input case (MABP-to-MCBFV), 
both linear and nonlinear, which has been studied 
extensively in the past because it yields measures of 
frequency-dependent “vascular admittance” (the inverse of 
vascular impedance). In this case, the number of free 
parameters is reduced to 6 for linear modeling (L=5), while 
for nonlinear modeling this number becomes 21 for the 2

nd
 

order Laguerre-based model or 10 for the PDM-based model 
with 3 PDMs and cubic ANFs. A practical implication of the 
reduced number of free parameters is that shorter data-
records can support the estimation task or, alternatively, 
greater estimation accuracy is achieved for the same data 
length. The results of PDM-based linear and nonlinear 
modeling of the CFA system are presented in the following 
section and are juxtaposed to results obtained using 
previously introduced methods, starting with the single-input 
(MABP-to-MCBFV) case. 

III. RESULTS 

A. Linear Modeling for the Single-Input Case using 

Transfer Functions  

 We begin with linear single-input modeling of CFA 

using the Transfer Function measurement between MABP 

(input) and MCBFV (output) that was employed in previous 

studies [43, 44], for the purpose of comparison with the 

proposed PDM-based approach. The Transfer Function is 

estimated as the ratio of the input-output cross-spectrum  

to the input spectrum , where p(t) denotes the input 

MABP signal and f(t) denotes the output MCBFV signal:  

 (1) 

 Note that the computed spectra are statistical estimates 
because they are based on finite data-records of random 
signals (i.e. they have nonzero statistical variance). The 
magnitude of the obtained Transfer Function estimate (Gain 
Function) represents a frequency-dependent measure of 
vascular admittance (the inverse of impedance). Fig. (3) 
shows the Gain Functions for the 12 subjects of this study: 
average waveform and standard-deviation bounds (left 
panel) and illustrative Gain Functions from 3 subjects (right 
panel). These plots demonstrate the high statistical 
variability of the Gain (or Transfer) Function measurement. 
This motivates the use of input-output modeling with 
Laguerre expansions that reduces this variability, as 
demonstrated below. The inverse Fourier Transform of the 
Transfer Function is the Impulse Response Function 
(IRF),  of the linear model of the MABP-to-MCBFV 
relationship in accordance with the convolutional relation:  

 (2) 

 Fig. (4) shows the obtained IRFs for the 12 subjects of 
this study, indicating considerable inter-subject variability 
and statistical estimation variance for each subject. This 
variability can be reduced significantly using Laguerre 

Fig. (3). The Gain Functions (i.e. magnitudes of the Transfer Functions) for the linear models of the pressure-to-flow dynamic relationship: 

average waveform and standard-deviation bounds for the 12 subjects (left panel) and illustrative Gain Functions from 3 subjects (right 

panel). High inter-subject variability is evident.  

Fig. (4). The Impulse Response Functions (IRFs) of the linear models obtained via inverse Fourier Transform of the respective Transfer 

Functions: average waveform and standard-deviation bounds for the 12 subjects (left panel) and illustrative IRFs from 3 subjects (right 

panel).  
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expansions for the estimation of the 1
st
 order (linear) 

Volterra model, as demonstrated below. Note that these IRF 
estimates are scaled via linear regression so that their 
prediction, based on (2), achieves minimum mean-square 
error. The IRF estimate, can be used in conjunction 
with (2) to generate, through convolution with the input 
MABP signal p(t), linear model predictions of the output 
MCBFV signal f(t). The mean (standard deviation) of the 
prediction NMSE (Normalized Mean Square Error) of these 
linear models for the 12 subjects is: 63.94% (17.30%). The 
considerable error in the model predictions points to the 
prevailing low signal-to-noise ratio and possible system 
nonlinearities in the CFA system. 

B. Linear Laguerre-Based Modeling for the Single-Input 
Case  

 Before we extend our study to nonlinear modeling, we 
compare the linear model predictions based on the IRF 
estimates of Fig. (4) with the 1

st
 order kernels of the linear 

Volterra models using Laguerre expansions with L= 5, 
alpha= 0.5 [31], which are shown in Fig. (5) along with their 
frequency-domain counterparts (magnitude only). The latter 
are estimates of the “apparent” Gain Functions. The 

adjective “apparent” is used to point out that these are 
“linearized” model approximations of an actual nonlinear 
system. The phase of the Transfer Function may also be used 
to explore phase relations between the MABP and MCBFV 
signals (e.g. the phase lead of the flow signal relative to the 
pressure signal that is associated with the compliance of the 
vasculature in the Windkessel model). We note that the 1

st
 

order Volterra kernel represents the best linear model of a 
nonlinear system and, therefore, it is not generally the same 
as the IRF which is derived under the assumption that the 
system is linear [59]. It is evident that the Laguerre-based 1

st
 

order kernel estimates (and the corresponding apparent Gain 
Functions) have some differences but exhibit smaller 
statistical variance than their counterparts (IRFs) obtained 
via cross-spectral methods. We note that the zero-lag values 
of these kernels are significantly larger than their IRF 
counterparts for all subjects. The resulting mean (standard 
deviation) of the prediction NMSE of these Laguerre-based 
linear models for the 12 subjects is: 55.47% (15.42%) -- 
better than their IRF-based counterparts (55% versus 64%) 
and with smaller variability. We explore below further 
improvements in prediction accuracy using Laguerre-based 
nonlinear models. 

Fig. (5). (a). The 1
st
 order kernel estimates based on the best linear models using Laguerre expansions: average waveform and standard-

deviation bounds for the 12 subjects (top left panel) and illustrative kernels from 3 subjects (top right panel). (b) The apparent Gain 

Functions (Fourier Transform magnitude of the 1
st
 order kernels) based on the best linear models using Laguerre expansions: average 

waveform and standard-deviation bounds for the 12 subjects (bottom left panel) and illustrative apparent Gain Functions from 3 subjects 

(bottom right panel).  
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C. Nonlinear PDM-based Modeling for the Single-Input 
Case  

 Nonlinear modeling of CFA has been attempted 
previously by our group with Volterra models (for both the 
single-input and the two-input cases) following the method 
of Laguerre-Volterra networks which combine Laguerre 
kernel expansions with Volterra-equivalent networks 
through an iterative estimation procedure [33-36]. The 
obtained results in the single-input (MABP) case showed 
significant prediction improvement for the nonlinear model, 
corroborating the importance of nonlinear modeling of CFA. 
Nonetheless, the complexity of the obtained models hinders 
their physiological interpretation and certain practical 
limitations persist in the convergence of the iterative 
approach employed by the Volterra-equivalent networks. 
These limitations are removed by the proposed PDM-based 
nonlinear modeling approach, because it is not iterative and 
reduces the number of free parameters in the nonlinear 
model. The advocated PDM modeling approach relies on a 
common set of “global” PDMs to offer a generalizable and 
(potentially) physiologically interpretable model, as shown 
below. The global PDMs are obtained from the data of a 
“reference group”, randomly selected among the available 
subjects (4 out of 12 available subjects in this case, with the 
remaining 8 subjects used as the “test set” for validation 
purposes). We note that the waveforms of the global PDMs 
did not change appreciably when different subjects were 
used in the randomly selected reference group. 

 Following the procedure for the estimation of the global 
PDMs for the single-input (MABP) case that was outlined in 
the Methods section, we obtain the three global PDMs 
shown in Fig. (6) both in the time-domain and the frequency-
domain (FFT magnitude). We observe that the 1

st
 PDM 

exhibits a high-pass characteristic, consistent with the 
traditional Windkessel model and passive fluid mechanics of 
blood circulation. This PDM exhibits a blunt spectral peak ~ 
0.25 Hz, probably related to the respiratory sinus arrhythmia 
(breathing cycle). The 2

nd
 PDM exhibits two spectral peaks 

around 0.03 Hz and 0.15 Hz, while the 3
rd 

PDM exhibits a 
single resonant peak around 0.05 Hz. The source of these 
resonant peaks ought to be explored in future studies, but it 
is likely to be related to myogenic mechanisms and the 
autonomic nervous system [36]. Our previous studies have 
shown that most of the nonlinear characteristics of CFA are 
exhibited in the range 0.02 – 0.08 Hz [33-36].  

 To complete the PDM model for the single-input case, 
we must now estimate the “associated nonlinear function” 
(ANF) for each global PDM, which is a static (cubic in this 
case) nonlinearity applied to the convolution of the input 
MABP signal with the respective global PDM. These ANFs 
are distinct for each subject and can be used to quantify the 
CFA characteristics in each patient, offering a potential 
diagnostic tool. As an illustrative example, Fig. (7) shows 
the three ANFs of the respective global PDMs for subject #4. 
It is evident that the ANF of the 1

st
 PDM is almost linear and 

much larger than the other two ANFs (i.e. its contribution to 

Fig. (6). The three global PDMs obtained in the time-domain (left) and the frequency-domain (right) for the single-input MABP-to-MCBFV 

system. The form of these PDMs suggests specific physiological mechanisms associated with each of them (see Discussion section). The 

values of the integrated PDMs (areas): are 0.1270, 0.3622, and 1.2275, respectively. 

Fig. (7). The Associated Nonlinear Functions (ANFs) of the three global PDMs for subject #4. The ANF of the 1
st
 PDM (left) is almost linear 

and much larger than the other two ANFs (i.e. its contribution to the model output is larger). The positive slope of the 1
st
 PDM is consistent 

with passive fluid dynamics, but the small negative slope of the 2
nd

 PDM (middle) is not consistent with passive fluid dynamics and suggests 

the presence of an active mechanism of counter-regulation. The ANF of the 3
rd

 PDM (right) has a positive slope and exhibits a nonlinear 

characteristic. 
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the model output is larger). We also observe that the positive 
slope of the 1

st
 PDM is consistent with passive fluid 

dynamics. However, the small negative slope of the 2
nd

 PDM 
is not consistent with passive fluid dynamics and suggests 
the presence of an active mechanism of counter-regulation. 
The ANF of the 3

rd
 PDM has a positive slope and exhibits a 

nonlinear characteristic that tends to emphasize the effects of 
blood pressure increases. The resulting PDM-based 
nonlinear model predictions have NMSE values with mean 
(standard deviation) of: 53.8% (14.7%) over all 12 subjects. 
We note that, although this is not a significant improvement 
in average prediction accuracy over the linear Laguerre-
based models, these nonlinear models are based on the 
global PDMs of Fig. (6) and, therefore, have far fewer free 
parameters than their Volterra counterparts which have 
provided nonlinear model predictions of greater accuracy 
[48]. 

D. Nonlinear PDM-based Modeling for the Two-Input 
Case  

 We proceed with the estimation of the “global” PDMs 
when two inputs are used (MABP and ETCO2) for the same 
output (MCBFV). The procedure is the same as for the 
single-input case and involves the Laguerre-based 2

nd
 order 

self-kernel estimates for the respective input. The cross-
kernels are analyzed separately to yield the cross-PDMs, as 
described in the Methods section. The two-input 2

nd
-order 

Volterra model is obtained using the Laguerre expansion 
parameters: L1= 5, alpha1= 0.5, L2= 3, aplha2= 0.5. The 
obtained global PDMs for the MABP and ETCO2 inputs are 
shown in Fig. (8) in the time and frequency domains. It is 
encouraging that the global PDMs for the MABP input are 

almost identical with the single-input case, suggesting that 
the effects of the two inputs are segregated by the proposed 
methodology. The 1

st
 PDM of the ETCO2 input has a high-

pass characteristic (like its MABP counterpart) and exhibits 
a blunt spectral peak ~0.15 Hz, possibly related to the 
autonomic nervous system (see Discussion). The 2

nd
 PDM of 

the ETCO2 input has a low-pass characteristic (half-max 
frequency of ~ 0.08 Hz), indicating integration of the input 
values over 6-8 sec. The 3

rd 
PDM of the ETCO2 input 

exhibits a single resonant peak around 0.07 Hz. The origin of 
these mechanisms (related to the action of chemoreceptors 
and autonomic control or endothelial processes) ought to be 
explored in future studies (see Discussion).  

 The obtained ANF coefficients for these global PDMs 
indicate the following: 

1. The linear coefficients are much larger than the 
quadratic and cubic coefficients of the ANFs for the 
MABP input. The contribution of the 1

st
 PDM is 

dominant over the other two PDMs (average value of 
linear coefficient: 0.755 for the 1

st
 PDM, versus - 0.119 

and - 0.014 for the 2
nd

 and 3
rd

 PDM respectively).  

2. The linear coefficients are much larger than the 
quadratic and cubic coefficients of the ANFs for the 
ETCO2 input as well, with the exception of the 
quadratic coefficient of the 1

st
 PDM which is about half 

the linear coefficient on the average (0.251 versus 
0.446) indicating stronger hypercapnic than hypocapnic 
response. The contribution of the 1

st
 PDM is again larger 

than the other two PDMs (average value of linear 
coefficient: 0.446 for the 1

st
 PDM, versus 0.249 and -

0.006 for the 2
nd

 and 3
rd

 PDM respectively). 

Fig. (8). The three global PDMs of the two-input CFA model for each of the two inputs, MABP (left column) and ETCO2 (right column), 

shown in the time-domain (top panels) and in the frequency-domain (bottom panels). The values of the integrated PDMs (areas): are 0.0342, 

0.2682, 1.4483 for MABP and 1.4288, 3.8415, and 0.8285 for ETCO2 (1
st
, 2

nd
 and 3

rd
 respectively). 
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3. The only ANFs that exhibit consistently positive slope 
are for the 1

st
 PDM of the MABP input and the 2

nd
 PDM 

of the ETCO2 input. The slope of the ANF for the 1
st
 

PDM of the ETCO2 input is mostly positive (10 out of 
12 subjects). 

4. The strength of the nonlinearity varies considerably 
among subjects and its form generally exhibits mild 
sigmoidal (saturating) characteristics. The nonlinearity 
is highest in the ANF of the 1

st
 PDM for the ETCO2 

input (large quadratic component indicating stronger 
hypercapnic response), followed by the ANF of the 1

st
 

PDM for the MABP input (large negative quadratic 
component indicating stronger hypobaric response). 

 Completion of the PDM-based two-input nonlinear 
model requires the inclusion of cross-terms that are derived 
from the cross-kernel estimates. Application of the procedure 
outlined in Methods yields the two cross-PDM pairs shown 
in Fig. (9) that account for inter-modulation effects between 
the two inputs (i.e. model terms that are products of the 
convolutions of the cross-PDM pairs with the respective 
inputs). The spectral characteristics of these cross-PDMs are 
similar to the global PDMs. The coefficients of the cross-
terms in the PDM model are estimated, along with the 
coefficients of the cubic ANFs of the global PDMs (and the 
baseline value) through least-squares fitting to the output 
data. Note that these cross-PDMs can be expressed as linear 
combinations of the global PDMs for the respective input. 
The obtained coefficients for the cross-PDM terms indicate 

that their significance varies considerably among subjects, 
both in terms of magnitude and sign. The average (standard 
deviation) value for the prediction NMSE of the PDM-based 
two-input model was: 40.4% (14.4%). 

 In order to examine the functional characteristics of the 
two-input PDM nonlinear model, we compute the model 
response to step changes of the MABP input for fixed level 
of ETCO2. Two illustrative cases are shown in Fig. (10) for 
subject #1. The left panel shows the model response under 
hypercapnic conditions (ETCO2 elevated to +1 mmHg 
relative to baseline) for an initial step increase of MABP (+2 
mmHg relative to baseline) for 20 sec, a subsequent drop to 
baseline for 20 sec, and another drop to -2 mmHg relative to 
baseline for another 20 sec (note that the settling time of this 
model is < 20 sec). The right panel shows the model 
response under hypocapnic conditions (ETCO2 level 
dropped by 1 mmHg relative to baseline) for the same 
sequence of MABP step changes. As expected, the PDM 
model correctly predicts the blood flow autoregulation for 
step changes in blood pressure (showing a return of MCBFV 
to baseline after a transient caused by the MABP step 
change) and an increase in steady-state MCBFV in response 
to elevated ETCO2 or a decrease in response to reduced 
ETCO2 (normal CO2 vasoreactivity). 

 In order to examine the nonlinear characteristics of the 
two-input CFA model, we compute the steady-state model 
response to step changes of the two inputs for various values 
within the physiological range. The resulting steady-state 

Fig. (9). The two global cross-PDM pairs of the two-input CFA model obtained for the MABP input (left column) and the ETCO2 input 

(right column). Time-domain representation (top panels) and frequency-domain representation (bottom panels). The integrated values of the 

cross-PDMs are 0.0007 and 0.0121 for the MAPB input (1
st
 and 2

nd
 respectively) and 0.4498 and 2.4960 for the ETCO2 input (1

st
 and 2

nd
 

respectively).  
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response surfaces for subjects #3 and #8 are shown in  
Fig. (11) for illustrative purposes. A homeostatic plateau is 
evident with respect to MABP step changes (demonstrating 
the effect of autoregulation). It is also evident that the CO2 
vasoreactivity is supralinear. 

IV. CONCLUSIONS & DISCUSSION 

 In this study, we seek to advance our quantitative 
understanding of the process of cerebral flow autoregulation 
(CFA) by use of dynamic nonlinear models based on the 
concept of Principal Dynamic Modes (PDMs). CFA is 
defined as the dynamic process by which cerebral blood flow 
is maintained within physiologically acceptable bounds 
during fluctuations in cerebral perfusion pressure secondary 
to changes in arterial blood pressure. This study also 
addresses the dynamic modulatory effects of changes in 
blood CO2 tension on the CFA process. Our findings 
indicate that the effects of changes in CO2 tension on the 
pressure-flow relation (CO2 vasoreactivity) ought to be 
included in the PDM-based model. Note that pressure 
autoregulation and CO2 vasoreactivity are mediated by 
different physiological mechanisms.  

 The PDMs of the CFA model were estimated from beat-

to-beat time-series data of two “inputs”: MABP (Mean 

Arterial Blood Pressure) and ETCO2 (End-Tidal CO2), and 

one “output”: MCBFV (Mean Cerebral Blood Flow 

Velocity). The obtained PDM-based models were validated 

through their predictive capability and are deemed capable of 

predicting the MCBFV “output” for any given pair of 

“inputs” MABP and ETCO2 within the dynamic range of the 

analyzed data – notwithstanding the effects of possible 

system nonstationarity. The memory of this input-output 

system was found to be less than 20 sec (i.e. the effects of a 

change in MABP or ETCO2 on MCBFV are expressed 

within 20 sec). Although there is considerable inter-subject 

variability in the CFA process, three “global” PDMs for 

each of the two inputs were found to constitute an adequate 

and consistent “functional coordinate system” for 

representing the dynamics of the CFA process for all 12 

subjects in this study. The “Associated Nonlinear Functions” 

(ANFs) of the PDMs were estimated from the data and used 

to describe quantitatively the nonlinearities of the CFA 

process for each subject. The existence of such a set of 

global PDMs makes this formidable modeling task feasible 

 

Fig. (10). The nonlinear PDM model response for subject #1 to step changes of MABP for fixed level of ETCO2 under hypercapnic 

conditions of +1 mmHg (left) and hypocapnic conditions of -1 mmHg (right) relative to baseline. An initial step increase of MABP to +2 

mmHg for 20 sec is followed after by a return to the MABP baseline for 20 sec and a subsequent step decrease to -2 mmHg (note that the 

settling time of this system is <20 sec). As expected physiologically, the model autoregulates the MCBFV with respect to pressure changes 

(return to baseline after an initial transient) and the steady-state value of MCBFV is higher for hypercapnic conditions due to CO2 

vasoreactivity. 

Fig. (11). The steady-state response surface of the nonlinear PDM model for subject #3 (left) and subject #8 (right). Each value of the surface 

corresponds to the steady-state value of MCBFV in response to step changes of MABP and ETCO2 equal to the respective coordinate values.  
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in practice and facilitates the physiological interpretation of 

the modeling results. It is posited that the form of the global 

PDMs contains information of physiological importance 

regarding the underlying mechanisms of the CFA process. 

Future physiological studies should seek to examine which 

specific mechanisms give rise to these global PDM 

waveforms and their various features. There is a similar need 

for physiological interpretation of the form of the subject-

specific ANFs in future studies, which will be essential for 

their prospective use in improved clinical diagnosis for a 

host of important pathologies such as stroke, traumatic brain 

injury or neurodegenerative diseases. The main findings of 
this study are summarized below. 

A. The Dynamic CFA Process is Nonlinear and 
Nonstationary  

 Nonlinear modeling/analysis of the CFA process was 
attempted previously with Volterra kernels and the Laguerre-
Volterra network [17, 38, 47-50]. It was shown that such 
nonlinear models reduced significantly the output (MCBFV) 
prediction error. However, these models retained formidable 
complexity and exhibited considerable inter-subject 
variability, both of which hindered their physiological 
interpretation and their broader acceptance by the research 
community. The PDM-based nonlinear models are 
functionally equivalent with the kernel-based Volterra model 
of the same order (from the output prediction point of view) 
but their complexity is significantly reduced in terms of 
model structure and number of free parameters. The PDM 
modeling approach allows estimation of higher order 
nonlinearities and facilitates the physiological interpretation 
of the obtained model. It also makes the model estimation 
more robust and accurate from short data-records – thus 
mitigating the effects of intrinsic nonstationarities in the 
CFA process [21, 46, 50, 60].  

 The obtained models demonstrate the existence of 
nonlinearities in the CFA process within the dynamic range 
of the analyzed data, especially in the frequency range below 
0.08 Hz. These nonlinearities are relatively mild for the 
pressure-dependent components of the model, but somewhat 
stronger for the CO2-dependent components of the model 
that allow rapid flow increase in response to hypercapnia (as 
quantified by the large quadratic ANF coefficient for the 1

st
 

PDM of the ETCO2 input). Cross-interaction terms were 
identified in the form of cross-PDMs that are equivalent to a 
Volterra cross-kernel. These terms describe the 
intermodulation of pressure and CO2 effects on cerebral 
blood flow. The Volterra approach (kernel-based or PDM-
based) is the only known method that can quantify such 
cross-interactions. 

 The validity of the obtained PDM models was also 

demonstrated in the case of step changes in the MABP and 

ETCO2 inputs (see Fig. 10) where the physiologically 

expected response was predicted by the model – i.e. a return 

of MCBFV values to baseline after a step increase of MABP 

(pressure autoregulation) and an increase of MCBFV after a 

step increase of ETCO2 (CO2 vasoreactivity). We note the 

big difference between the transient and the steady-state 

responses that illustrates the clinical importance of 

understanding the dynamic CFA process (as opposed to 
static CFA).  

B. Inclusion of CO2 Input Data is Essential for Reliable 
Modeling of CFA 

 The results of this study have confirmed the view that the 
effects of CO2 on cerebrovascular characteristics are of 
primary importance with respect to cerebral perfusion and, 
therefore, a CO2-dependent input should be included in the 
CFA model along with the pressure-dependent input. It was 
further shown that the CO2 effects on cerebral blood flow 
are more nonlinear than the pressure effects and are 
manifested mostly in the low frequency range from 0.02 to 
0.08 Hz. The obtained PDM-based models show high inter-
subject variability in both the CO2-dependent and the 
pressure-dependent component of the model.  

C. Characteristics and Physiological Interpretation of the 
Global PDMs 

 The specific physiological mechanisms that determine 
the form of the obtained global PDMs and the subject-
specific ANFs require future studies. We provide herein an 
initial interpretation of the observed spectral characteristics 
of the global PDMs. Specifically, the 1

st
 PDM of MABP 

exhibits a high-pass characteristic (half-max frequency of 
~0.05 Hz), consistent with the traditional Windkessel model 
of fluid mechanics in the passive vasculature. This PDM has 
a blunt spectral peak ~ 0.25 Hz, probably related to the 
breathing cycle. Its ANF has a strong linear coefficient with 
consistent positive sign, suggestive of its fluid mechanical 
origin. The 2

nd
 PDM of MABP exhibits two spectral peaks 

around 0.03 Hz and 0.15 Hz, and the 3
rd 

PDM of MABP 
exhibits a resonant peak around 0.05 Hz. These resonant 
peaks may be related to the autonomic nervous system [50, 
61]. Although this question deserves careful examination in 
future studies, some initial indications in support of these 
hypotheses are found in our previous studies of Volterra 
modeling under conditions of ganglionic blockade of 
autonomic neural activity using trimethaphan and 
sympathetic activation during lower body negative pressure 
[17, 50]. 

 The interpretation of the PDM waveforms is even more 

challenging for the ETCO2 input, because less information is 

available about the specific dynamics of this process. Fig. (8) 

shows that the 1
st
 PDM of ETCO2 exhibits a high-pass 

characteristic with half-max frequency of about 0.05 Hz, 

akin to its MABP counterpart, but the blunt spectral peak is 

now around 0.15 Hz. The ANF of this 1
st
 PDM of ETCO2 

has a large quadratic coefficient, indicating stronger response 

to hypercapnia than hypocapnia. The 2
nd

 PDM of ETCO2 

exhibits a low-pass characteristic with bandwidth (half-max 

frequency) of about 0.08 Hz. This PDM integrates the 

ETCO2 input over ~8 sec and, therefore, it should be critical 

in cases of temporary hypercapnia or hypocapnia during 

hypoventilation or hyperventilation, respectively – a 

hypothesis supported by the fact that the sign of the first-

degree (linear) coefficient of this 2
nd

 PDM is consistently 

positive. Note that our previous trimethaphan study [17] 

showed suppression of the low-frequency gain for ETCO2, 

suggesting that this 2
nd

 PDM is influenced by autonomic 

neural activity. The importance of the 2
nd

 PDM of ETCO2 is 

underlined by the fact that most of the power of the ETCO2 

signal resides within the high-gain low-frequency range of 

this PDM (see Figs. 1 and 8). The 3
rd

 PDM of ETCO2 
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exhibits a spectral peak around 0.08 Hz and the underlying 
physiological mechanism must be explored in future studies.  

D. The PDM-Based Model is Dynamically Constrained 
and Generalizable 

 This point was made earlier but its importance invites 
further elaboration. The use of “global” PDMs in the 
advocated methodology implies that the CFA system 
dynamics can be properly constrained (in first 
approximation) for all subjects by the “functional coordinate 
system” defined by these global PDMs. This represents a 
“generalizability” of the CFA model that is potentially 
useful, because it reduces the model complexity and 
facilitates its physiological interpretation with potential 
clinical implications. Open questions remain with regard to 
the subject-specific form of the ANFs, where a cubic 
polynomial form has been initially imposed in order to 
explore this approach. This issue deserves more attention in 
future studies.  

E. Potentially Useful Clinical Indices Derived from the 
Linearized PDM-Based CA Model 

 In addition to exploring the most appropriate form for the 
ANFs, some attention should be directed towards the use of 
PDM-based “linearized” models (i.e. the “best” linear 
approximations of the CFA system achieved in the PDM 
framework), since they may represent an efficient way to 
achieve improved clinical diagnosis without the “overhead” 
of a detailed PDM-based nonlinear model. Note that the 
“linearized” model is generally distinct from the linear 
component of a nonlinear Volterra or PDM model, since the 
high-order kernels generally contribute to the 1

st
 order kernel 

estimate of the “linearized” model [51]. Specifically, we 
envision two CFA-related indices of potential clinical utility 
that are derived from these PDM-based “linearized” models: 
(1) the Effective Pressure Reactivity (EPRx) index that is 
defined as the steady-state change of MCBFV in response to 
a unit-step change of MABP (i.e. the integral of the 1

st
 order 

MABP-related kernel of the linearized CFA model); (2) the 
Effective CO2 Reactivity (ECRx) index that is defined as the 
steady-state change of MCBFV in response to a unit-step 
change of ETCO2 (i.e. the integral of the 1

st
 order ETCO2-

related kernel of the linearized CFA model). These indices 
are subject-specific and can be easily computed in practice. 

 The PDM-based model can be related to commonly used 
clinical indices of CFA for clinical studies of traumatic brain 
injury, hypertension, diabetes and stroke. For instance: (a) 
the cerebrovascular resistance (CVR) index is obtained as 
the ratio of short-time averages of MCBFV over MABP or 
through computation of transfer functions [13, 40]; (b) the 
correlation index (Mx) is computed from short-term 
correlations (averaged over 5-10 sec) between beat-to-beat 
time-series data of pressure and flow velocity [45]; (c) the 
“autoregulation index” (ARI) is computed from the 
integrated impulse response of an estimated second-order 
linear model [62]; (d) the “pressure reactivity” index (PRx) 
is computed as the cumulative flow response to a step 
pressure change; (e) the “CO2 reactivity” index (CRx) is 
computed as the cumulative flow response to a step CO2 
change CO2 [19]; and (f) the phase difference between 
oscillations in MABP and MCBFV has been used as another 
autoregulation index [42]. These indices can be related to the 

PDM-based model as follows: (a) the CVR index via the 
Gain Function estimate (i.e. Fourier Transform magnitude of 
1

st
 order MABP kernel); (b) the Mx index via averaging of 

the 1
st
 order MABP kernel over lags from 1 to 10 sec 

(because the input-output cross-correlation for a linearized 
model is equal to the convolution of the 1

st
 order kernel with 

the autocorrelation of the input ); (c) the ARI via the integral 
of the 1

st
 order MABP kernel of the “linearized” model fitted 

to a second-order differential equation (the Tiecks model); 
(d) the PRx index via the steady-state response to a step 
MABP input; (e) the CRx index via the steady-state response 
to a step ETCO2 input; and (e) the phase-difference index 
through the phase function of the Fourier Transform of the 
1

st
 order MABP kernel of the “linearized” model.  

 Thus, the PDM-based model may unify all these clinical 
indices. Most importantly, the two-input PDM-based model 
of CFA provides critical clarity with respect to the 
contemporaneous effects of CO2 tension and arterial 
pressure on CFA. This allows computation of pressure-
dependent indices from the PDM-based model for isocapnic 
conditions (steady CO2 tension), whereas this is not possible 
for previously defined indices – an important distinction for 
clinical practice, since the effect of CO2 on CFA is known to 
be significant. Likewise, the CO2-dependent indices from 
the PDM model (e.g. the PDM-based ECRx index) can be 
defined for isobaric conditions (steady arterial pressure), 
whereas this is not possible for other indices of CO2 
vasomotor reactivity. Finally, we note that the PDM-based 
indices can be computed from spontaneous activity data and 
do not require specialized maneuvers (e.g. Valsalva) that 
may drive the CFA system outside its physiological range.  

 The potential importance of the presented modeling 
methods for advancing our understanding of the CFA 
process and its implications for medical science necessitate 
further studies with a larger population in order to confirm 
these initial results and explore the specific physiological 
mechanisms underlying the characteristics of the PDM-based 
model. 

APPENDIX I: Basic mathematical relations for nonlinear 
Volterra and PDM modeling. 

 The general nonparametric Volterra model of a finite-
memory dynamic nonlinear system with a single input x(t) 
and a single output y(t) is given by the functional series 
expansion [52]: 

 

 In this context, the modeling task involves the estimation 
of the unknown Volterra kernels of the system {kn} from 
given input-output data x(t) and y(t). It has been shown [27] 
that this task is facilitated immensely by Laguerre 
expansions of the kernels: 

 

where {bj ( )} denote the orthonormal Laguerre function 

basis. Such kernel expansion yields the following nonlinear 

input-output relation which involves linearly the Laguerre 

expansion coefficients {cr}: 

 

   

   

� �
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 The fact that the Laguerre expansion coefficients enter 
linearly in the nonlinear Volterra model allows their 
estimation via least-squares regression (a relatively simple, 
robust and stable numerical procedure). Having estimated 
the Laguerre expansion coefficients, we can construct the 
Volterra kernel estimates using Equation (A2) and compute 
the model prediction for any given input using Equation 
(A1) or (A3). To date, Volterra models have been usually 
estimated up to 2

nd
 order.  

 The introduction of the concept of Principal Dynamic 
Modes (PDMs) has allowed the practical estimation of 
nonlinear models of higher order [31] as in the subject 
application. Briefly stated, the use of PDMs allows us to 
write the output equation as: 

 
where {up (t)} are the PDM outputs (i.e. convolutions of the 

input with the respective PDM) and fp[up]} are the static 

nonlinearities associated with each PDM (ANFs) which are 

typically given polynomial form (cubic in this application). 

This general modeling methodology has been extended to 

systems with multiple inputs and multiple outputs [31].  
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