Applications of Advanced Computing Solutions for Healthcare Systems - Part 3

Sivakumar Rajagopal¹*, Sujatha Rajkumar², Siva Kumar Subramaniam³ and Rahul Soangra⁴

¹Department of Sensor and Biomedical Technology: Vellore Institute of Technology, Vellore, Tamilnadu, India
²Department of Embedded Technology: Vellore Institute of Technology, Vellore, Tamilnadu, India
³Faculty of Electronics and Computer Engineering Universiti Teknikal Malaysia Melaka Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
⁴Department of Physical Therapy Crean College of Health and Behavioral Sciences Dale E. and Sarah Ann Fowler School of Engineering (Affiliate) Chapman University 9401 Jeronimo Rd., Irvine, CA 92618

© 2024 The Author(s). Published by Bentham Open.
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

*Address correspondence to this author at the Department of Sensor and Biomedical Technology: Vellore Institute of Technology, Vellore, Tamilnadu, India; E-mails: rsivakumar@vit.ac.in and gauthamsivakumar73@gmail.com

http://dx.doi.org/10.2174/0118741207280703240112404221

Soft computing solutions integrate the Internet of Medical Things (IoMT), mobile computing, medical image processing, biosignal processing, network security, cryptography, and cybersecurity for healthcare applications. Soft computing-based services are widely used in the healthcare industry for disease diagnosis and prediction, health data analytics, drug discovery and development, etc. The system integration of various soft computing technologies with emerging IoMT-based blockchain technology has substantial potential for improving remote patient health monitoring, decision-making, and critical healthcare data security. Further, soft computing solutions can resolve several issues, such as the severe limitations of data necessary to improve user compliance. Moreover, these issues include resource constraints, transmission reliability, security, and interoperability between different platforms. In addition, there are many challenges, like integration of healthcare systems with mobile platforms, real-time connectivity over heterogeneous networks, security, privacy, and others. The ability of our current healthcare system to cope with the current situation is mainly dependent on advanced health technology, such as telehealth, chatbots, artificial reality (AR), virtual reality (VR), and artificial intelligence (AI), to build a patient-centred, secure healthcare system. Hence, this thematic issue focuses on recent developments in computing solutions for integrating AI, machine learning models, medical image processing techniques, advanced network security methods, blockchain, AR/VR, and chatbots to build an efficient healthcare system, which can lead to a new, promising, and secure healthcare system. Additionally, this thematic issue aims to bring together researchers and practitioners to address several kinds of research and achievements in healthcare systems, intelligent healthcare, and remote monitoring applications.

The thematic issue is organized into eight articles. The title of each of the articles is as follows:

Article 1 - Classification of Colorectal Cancer Using ResNet and EfficientNet Models
Article 2 - Artificial intelligence Approaches in Healthcare Informatics Toward Advanced Computation and Analysis
Article 3 - A Study of Machine Learning Algorithms Performance Analysis in Disease Classification
Article 4 - Lung Cancer Prediction and Classification Using Decision Tree and VGG16 Convolutional Neural Networks
Article 5 - Remote Disease Diagnosis through IoMT-Enhanced Blood Cell Classification with Deep Learning
Article 6 - An IoT-driven COVID and Smart Health
Check Monitoring System

Article 7 - MRI Brain Tumor Segmentation using Cuckoo-based Dimensionality Reduction and Ensemble Learning

Convolutional Neural Network

Article 8 - A New Insight into Brain Tumor Image Classification Through MRI Images Using CNN Techniques