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Abstract: Spikes and sharp waves recorded on scalp EEG may play an important role in identifying the epileptogenic 

network as well as in understanding the central nervous system. Therefore, several automatic and semi-automatic methods 

have been implemented to detect these two neural transients. A consistent gold standard associated with a high degree of 

agreement among neuroscientists is required to measure relevant performance of different methods. In fact, scalp EEG da-

ta can often be corrupted by a set of artifacts and are not always served as data of gold standard. For this reason, the use of 

intracerebral EEG data mixed with gaussian noise seems to best resemble the output of scalp EEG brain and serves as a 

consistent gold standard. In the present framework, we test the robustness of two important methods that have been previ-

ously used for the automatic detection of epileptiform transients (spikes and sharp waves). These methods are based re-

spectively on Discrete Wavelet Transform (DWT) and Continuous Wavelet Transform (CWT). Our purpose is to elabo-

rate a comparative study in terms of sensitivity and selectivity changes via the decrease of Signal to Noise Ratio (SNR), 

which is ranged from 10 dB up to -10 dB. The results demonstrate that, DWT approach turns to be more stable in terms of 

sensitivity, and it successfully follows the detection of relevant spikes with the decrease of SNR. However, CWT-based 

approach remains more stable in terms of selectivity, so that, it performs well in terms of rejecting false spikes compared 

to DWT approach. 

Keywords: CWT, DWT, Epilepsy, noisy neural data, Stereo-Electroencephalography (SEEG). 

1. INTRODUCTION 

Studying and monitoring the neural activities of the hu-
man brain has become one of the most interesting and chal-
lenging fields of biomedical engineering [1]. Identification 
of the specific structural brain abnormalities in nervous sig-
nals is one of the main goals of neuroscientists and biomedi-
cal engineers since it provides valuable information about 
the current and future health status of epileptic patients. In 
addition, neural epileptic features may play an important role 
in understanding the central nervous system. Actually, inter-
ictal discharges like spikes and sharp waves [2-5] are poten-
tially serving as distinctive biomarkers of epileptogenic 
brain. The International Federation of Societies for Electro-
encephalography and Clinical Neurophysiology (IFSECN) 
[2, 6] defines a spike as a transient, clearly distinguished 
from background activity, with duration of 20 ms up to 70 
ms. Sharp wave- same as spike, but with duration ranged 
from 70 ms up to 200 ms. 

Over the last years, several methods [1, 2, 6] have been 
proposed for automatic detection of neural spikes recorded 
on scalp EEG. In order to evaluate the accuracy and efficien-
cy of the proposed methods, a consistent gold standard 
(ground truth neural spikes) associated with a high degree of 
agreement among neuroscientists are required. As a matter of 
fact, scalp EEG data can often be contaminated or corrupted 
by a set of artifacts like sleep transients, eye blink, eye 
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movement, muscle, ECG patterns and electrode artifacts [6]. 
Thus, the visual marking of neuronal spikes buried in these 
types of noise and interferences is believed to be a compli-
cated issue. Although neuroscientist experts are skillful, false 
identification due to subjective analysis and disagreement 
between them for the same record can easily occur, especial-
ly in the case of scalp EEG signals with low SNR. Currently, 
the major problem is that the use of scalp EEG data could 
represent a lack of a consistent gold standard, which can 
affect the evaluation of relevant performance for different 
detection methods. 

To tackle this problem, other methodological challenges 
have been proposed [1, 7-9]. In fact, the use of mixed intrac-
erebral EEG data with random noise seems to be highly ac-
curate and serve as a reliable gold standard used in the as-
sessment of the performance of different detectors. These 
types of data best resemble and are highly correlated with the 
output scalp EEG of the brain. In this study, we have two 
main objectives: our first goal is to evaluate the robustness 
degree in terms of sensitivity and selectivity changes via the 
decrease of SNR. Mainly, we have used two approaches that 
have been previously used for the automatic detection of 
epileptiform spikes, based respectively on: Discrete Wavelet 
Transform (DWT) [6, 10] and Continuous Wavelet Trans-
form (CWT) [3, 11]. The robustness degree was evaluated via 
an epileptic SEEG data mixed with different noise levels range 
from 10 dB up to -10dB. Our second purpose is to elaborate 
an overall comparison between the two approaches.

The structure of the paper is ordered as follows: Section 
1 presents the Introduction. Section 2 describes the materials 
and methods. Section 3 concerns our results and discussion. 
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The last section presents the conclusion, and also the direc-
tions for future research. 

2. MATERIALS AND METHODS 

2.1. Intracerebral EEG Data & Preprocessing 

The EEG data used in this study was recorded by semi-
rigid multi-lead electrodes that were stereotactically implant-
ed in the patient’s brain. The stereotactic-EEG (SEEG) elec-
trodes have a diameter of 0.8 mm and generally consist of 10 
to 15 contact leads, 2 mm wide and 1.5 mm apart (DIXI 
Medical, Besançon, France). The intracerebral recordings 
were conducted at the Lyon Neurological Hospital (Lyon, 
France) using a video-SEEG monitoring system (Micromed, 
Treviso, Italy), which allowed the simultaneous data record-
ing from up to 128 depth-EEG electrode sites. The data were 
sampled at 256 Hz. At the time of acquisition the data is rec-
orded using a reference electrode located in white matter, 
each electrode trace is re-referenced with respect to its direct 
neighbor (bipolar derivations). This bipolar montage helps 
eliminate signal artifacts common to adjacent electrode con-
tacts (such as the 50 Hz power supply artifact) and achieves 
a high local specificity by canceling out effects of distant 
sources that are equally spread to both adjacent sites through 
volume conduction. The spatial resolution achieved by the 
bipolar SEEG is on the order of 3 mm. 

Our methods were tested on 2-minute segments of SEEG 
data containing only epileptic spikes. Visual marking of 
spikes was performed by one expert trained in electrophysi-
ology and spikes analysis. All the marked events were im-
mediately saved numerically in a database. That would serve 
subsequently as a gold standard for the evaluation and the 
measurement of the performance detection. Then, the chosen 
data were mixed with the Gaussian noise using six SNR val-
ues (10 dB, 3 dB, 0 dB, -3 dB and -10dB), associated with 
10 trials for each SNR. The variation of SNR values in hu-
man scalp EEG is comprised approximately between 10 dB 
and -10 dB [12, 13]. Therefore, only this range was taken 
into consideration in our study. Subsequently, the obtained 
data were approximated as scalp EEG recordings and con-
sidered as a consistent gold-standard data set. The gold 
standard will be needed to test the stability of various test 
methods against the noise. The visual marking of epileptic 
spikes was performed via the signal visualization tools avail-
able in the EEGLAB [14] and ELAN [15] toolboxes. The 
processing and analysis of all signals were performed with 
custom codes which were implemented using MATLAB 
2012a software. 

2.2. Discrete Wavelet Transform (DWT) 

 The basic idea of DWT wavelet analysis consists in ex-
pressing a signal ( ) as a linear combination of a particular 
set of functions, obtained by dilating and shifting a mother 
wavelet. The decomposition of the signal leads to a set of 
coefficients called wavelet coefficients based on the 
following equation:  

    (1) 

Where  , where a=2 and b=1. 

The original signal can be expressed as a linear combina-
tion of the wavelet functions weighted by the wavelet coeffi-
cients. The wavelet transformation analyses the signal at 
different frequency bands, with different resolutions by de-
composing the signal into a coarse approximation and detail 
information. The selection of suitable wavelet and the num-
ber of decomposition levels is very important in the analysis 
of signals using DWT wavelet transformation. The 
Daubechies wavelet (Db4) has been previously chosen for 
automatic EEG spike detection [6, 10], because it yields the 
highest correlation coefficients with the epileptic spike 
among the wavelet bases available in the MATLAB Toolbox 
and it best matches the shape and frequency characteristics 
of epileptic spikes [6, 10]. On the other hand, the appropriate 
band ranging from 4 Hz up to 16 Hz has been selected to 
detect epileptic spikes [6]. In fact, this band is very specific 
and not affected by different types of artifacts and non-
epileptic transients like sleep transients, eye blink, eye 
movement, muscle, ECG patterns and electrode artifacts and 
interferences [6]. The number of decomposition levels was 
chosen in terms of these frequency components. In the pre-
sent study, the sampling frequency is 256 Hz, since the EEG 
band taken into consideration is comprised between 4 and 16 
Hz, so the number of decomposition levels was chosen to be 
5. Thus, the input signal is decomposed into five details sub-
signals and one final approximation: D1 (64-128Hz), D2 
(32-64Hz), D3 (16-32Hz), D4 (8-16Hz), D5 (4-8Hz) and A5 
(0-4Hz). After that, the two sub-signals (D5 and D4) are 
summed up across all time samples. Subsequently, the ob-
tained signal is rectified and smoothened. The spikes are 
detected when the value of the obtained final signal is greater 
than a threshold. The threshold is defined as the sum of the 
mean and the standard deviation of the obtained final signal. 
The following Data flow diagram sums up the main steps of 
DWT-based approach (Fig. 1). 
 

 

Fig. (1). Data flow diagram of the DWT method.

 
2.3. Continuous Wavelet Transform (CWT) 

Continuous Wavelet Transform (CWT) coefficients are 
computed by continuous scaling and translating. This algo-
rithm is inspired from the methods proposed by [3, 12], but it 
is very similar to DWT method in its implementation. The 
continuous wavelet transform (CWT) is defined as the corre-
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lation between the signal to be analyzed and the wavelet 
functions. The used wavelet in our case is defined as 
follows:  

 (2) 

Where  is the characteristic frequency of the mother 
wavelet, the standard deviation of the Gaussian window in 
equation (2) is set to 1. Selection of the proper wavelet 
and the number of scales is very important for signal analysis 
using the CWT. Hence, in order to have a high correlation 
with epileptic spikes, the wavelet family was chosen in such 
a way that the ratio frequency to bandwidth was equal to 

 = 3, where  = 1/2 . Approximately the same 
band was used in this method like DWT, which ranged from 
4 Hz up to 16 Hz with a step of 1 Hz. The mother 
let , defined above, can be scaled by a factor a in fre-
quency and translated by an amount b in time as follows:  

 (3) 

 is known as a daughter wavelet. Scale a is related 
to a pseudo-frequency f according to the following relation-
ship:  

  (4) 

Where T is the sampling period and  is equal to 0.47 
Hz. The wavelet power  is then computed as follows: 

  (5) 

Time frequency map X(f,t) is computed from wavelet 
power  by transforming scale a into pseudo-
frequency f using equation (4) and replacing b with time t. 
Then, for each time sample, the average of all coefficients 
associated with different frequencies is done. Subsequently, 
the obtained signal is smoothed before selecting 
the threshold value. The detection threshold is defined as the 
sum of the mean and the standard deviation of the obtained 
final signal. Finally, detected spikes are positioned in time 
depending on the signal of interest. The following Data flow 
diagram sums up the main steps of CWT-based approach 
(Fig. 2).  
 

 

Fig. (2). Data flow diagram of the CWT method. 

2.4. Performance Metrics 

In this section, we present a brief review of concepts re-
lated to the performance’s evaluation. Assuming both spike 
also termed as gold-standard in EEG are properly annotated 
by an experienced neuroscientist. By comparing the output 
of the automatic detection procedure to visual identification 
by an expert, we derived the total true positive (TP) of spikes 
and False positive (FP). The performance of our tested ap-
proaches was evaluated only in terms of sensitivity and se-
lectivity. Indeed, sensitivity is defined as the capability of 
the system to detect correctly relevant spikes. However, se-
lectivity is defined as the capability of the system to select 
precisely true spikes and reject the spurious spikes correctly. 

 (6) 

 (7) 

  The specificity and the system accuracy were biased in 
this study because the tested EEG segments contain only 
epileptic spikes.  is defined as the number of spikes visu-
ally marked by the reviewer and correctly detected by the 
automatic detectors. is defined as the number of spikes 
visually marked by the reviewer and missed by the automatic 
detectors. FP is defined as the number of spurious spikes 
misclassified as true spikes by the automatic detectors. 

3. RESULTS AND DISCUSSION 

 Scalp EEG are generally contaminated by a set of arti-
facts and noises, which makes the discrimination between 
epileptic spikes and non-pathological transients in some cas-
es is less obvious. However, spikes recorded on intracerebral 
EEG can be easily distinguished by visual inspection and are 
associated with a perceived ground truth. In fact, the use of 
mixed intracerebral EEG with noise instead using directly 
scalp EEG is very useful. This methodology reflects a valua-
ble and practical procedure that can be used to estimate accu-
rately the relevant performance on the one hand, and to test 
the stability of such developed algorithm against noise by 
following its SNR variation on the other hand. In this study, 
we compared the stability of different approaches across 
random Gaussian noise. Our results of automatic spike de-
tection with different SNR and trials are illustrated in  
Fig. (3) and Table 1.  

 Our main findings are summarized as follows: different 
methods were approximately stable in low SNR (10 and 3 
dB) in which a high sensitivity and selectivity were obtained 
compared to the result without noise. For SNR= 0, -3 and  
-10dB, DWT remains more stable in terms of sensitivity 
compared to CWT with the decrease of SNR. However, 
CWT based approach remains more stable in terms of selec-
tivity compared to DWT approach, so that, it performs well 
in terms of the rejection of false spikes, which come essen-
tially from noise. The average sensitivity and the average 
selectivity achieved by DWT approach via all SNR are re-
spectively 96.88 % and 63.46%. On the other hand, the aver-
age sensitivity and the average selectivity achieved by CWT 
approach via all SNR are respectively: 93.01% and 79.10%. 
Our simulations have been carried out using a DELL-PC 
with Intel(R) Core (TM) i3 CPUM2350 2.30GHz and 4-GB 
RAM by MATLABR2012. The CPU times were assessed 
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Table 1.  Performance of spikes detection using DWT and CWT based-approaches with different SNR and different trials. 

SNR (dB) Performance (%) DWT method CWT method 

- sensitivity 100 100 

selectivity 91.84 90.20 

10 sensitivity  100 99.78 

selectivity 94.53 91.69 

3 sensitivity 99.56 99.27 

selectivity 86.94 92.78 

0 sensitivity 98.69 98.26 

selectivity 59.06 90.63 

-3 sensitivity 97.53 94.92 

selectivity 32.28 74.67 

-10 sensitivity 85.50 65.86 

selectivity 16.13 34.67 

 

 

Fig. (3). Graph of performance of different methods and different SNR. 

 
for one minute EEG data; it is 5.473 s for DWT approach 
and 5.117 s for CWT method. Overall, CWT based method 
seems to be more robust than DWT method in terms of per-
formance.  

In the current paragraph, we aim to provide some exam-
ples of spikes detection using respectively DWT approach 
and CWT approach. The left side of Fig. (4) presents an ex-
ample of spike detection based on the DWT method. Fig. 
(4a) gives an illustration of signal SEEG with spikes. Fig. 
(4b) shows the result of the original SEEG data mixed with 
the random Gaussian noise (SNR=-3dB). Fig. (4c) shows the 
result of summation, rectification and smoothing of details 
D4 and D5. The bottom plot (Fig. 4d) shows the position of 
detected spikes.  

 The right side of Fig. (4) presents, an example of spikes 
detection based on the CWT method. Fig. (4e) gives an illus-

tration of signal SEEG with spikes. Fig. (4f) shows the result 
of the original SEEG data mixed with the random Gaussian 
noise (SNR=-3dB). Fig. (4g) shows the map CWT and its 
thresholding. The bottom plot (Fig. 4h) shows the detected 
spikes using CWT.  

It may be much more interesting and challengeable to 
compare our methods with different other algorithms. 
However, the comparison between spikes detectors is not 
an easy task. The following reasons can be considered as 
difficulties in assessing or comparing the performances of 
automatic spikes detection methods: varying EEG record-
ing techniques, different electrode locations and patholo-
gies across patients, different definitions for spikes (i.e. 
frequency bands), and lack of gold standard for defining 
spikes events.  



A Robustness Comparison of Two Algorithms The Open Biomedical Engineering Journal, 2015, Volume 9    155 

 

Fig. (4). Example of spikes detection based respectively on DWT and CWT. 

 
CONCLUSION 

 Visual inspection and identification of spikes in epilepsy 
recordings are a time-consuming and a tedious procedure 
especially in the case of scalp EEG. So a sensitive selective, 
specific, accurate and robust technique of epileptic spikes 
detection is an important and useful tool that can assist neu-
roscientists and biomedical engineers. Different methods 
described in this paper can work well in high SNR. Howev-
er, with the decrease of SNR, DWT based approach can per-
form well than CWT approach in terms of sensitivity. Yet, 
CWT-based approach remains more stable in terms of selec-
tivity. As a final finding, the conjunction of the two methods 
can work well for the detection of epileptic spikes and sharp 
waves. Still, extensive testing and validation on more data 
sets are required. Also, further investigations are needed to 
quantify other performance measures such as specificity, and 
system accuracy using a complete set of data including both 
epileptic spikes and non-pathological transient events. It is 
also very interesting to compare our two methods with other 
different methods using the same methodology. 
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