
Send Orders for Reprints to reprints@benthamscience.net 

60 The Open Biomedical Engineering Journal, 2014, 8, 60-67  

 

 1874-1207/14 2014 Bentham Open 

Open Access 

Quality Metrics of Spike Sorting Using Neighborhood Components Analysis 

Xinyu Liu, Hong Wan∗ and Li Shi∗ 

School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, PR China 

Abstract: While an electrode has allowed for simultaneously recording the activity of many neurons in microelectrode 

extracellular recording techniques, quantitative metrics of cluster quality after sorting to identify clusters suited for single 

unit analysis are lacking. In this paper, an objective measure based on the idea of neighborhood component analysis was 

described for evaluating cluster quality of spikes. The proposed method was tested with experimental and simulated 

extracellular recordings as well as compared to isolation distance and Lratio. The results of simulation and real data from 

the rodent primary visual cortex have shown that values of the proposed method were related to the accuracy of spike 

sorting, which could discriminate well- and poorly-separated clusters. It can apply on any study based on the activity of 

single neurons. 
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1. INTRODUCTION 

 Studies of neuronal activity throughout the brain 
predominantly rely on extracellular recordings of spiking 
activity [1]. Since an electrode often simultaneously records 
spiking activity more than one neuron, spikes are always 
processed by sorting algorithms. Nevertheless, spike sorting 
algorithms are not perfect and classification errors may occur 
because of a number of reasons. Such as the recording 
hardware, electromagnetic interferences, the superimposed 
activity of multiple neurons, the spatially averaged activity 
of distant neurons and so on. Therefore, it is imperative to 
quantify unit quality after sorting for evaluating objectively 
results of spike sorting as well as improving the stability and 
reliability of neuron coding or decoding. 

 In most cases, the quality assessment was done 
subjectively by a human observer [2, 3], but the subjective 
methods don’t permit comparison of data quality across 
different studies, and unfortunately they are predisposed to 
personal bias. Therefore, several objective methods have 
recently been proposed for measuring unit quality. These 
methods can be classified into four categories: (a) Methods 
based on signal-to-noise ratio (SNR). These approaches have 
often served as a quantitative measure of unit quality in 
traditional microelectrode techniques because their 
significance is clear and can be easily calculated [4]. But 
they are not available when multiple units are recorded by 
the same electrode. (b) Methods based on refractory period. 
If spikes are from the same neuron, then there should be no 
interspike intervals less than the refractory period of neuron, 
which for most neurons is no less than 1 ms [5]. But these  
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methods are only suited for checking the quality of isolation 
over a long collection period. (c) Methods based on statistic 
distribution. For example, Pouzat et al. [6] assumed that the 
noise obeys a Gaussian distribution, which used to evaluate 
the variability of spike waveforms. The Lratio proposed by 
Schmitzer-Torbert et al. [4] used a Chi-square distribution as 
a distance measure of the noise events in a feature space. 
But, there is no general agreement about the statistic 
distribution of noise. (d) Methods based on distance 
measure. For instance, Harris et al. [7] and Schmitzer-
Torbert et al. [4] introduced isolation distance to quantify 
the quality of clustering by the minimal distance where the 
number of spike events and noise events is equal. The 
drawback of these methods is that they do not have a global 
scale to differentiate between well and poorly isolated units. 
Joshua et al. [8] described isolation score algorithm based on 
Euclidian distance to evaluate the quality of unit. The heavy 
computational burden makes it be sensitive to the number of 
spikes. 

 In order to circumvent these problems, a method based 
on neighborhood components analysis (NCA) was proposed 
for evaluating cluster quality in this paper. The NCA is a 
learning method for clustering multivariate data into distinct 
classes according to a given distance metric over the data, 
which is always used to dimensionality reduction [9] and fast 
classification [10]. Here, the idea to use the NCA is not to 
discover new variables which could be of interest, but to use 
the idea of NCA to estimate the probability that every event 
is correctly classified, and further estimate spike’s cluster 
quality. Functionally, the NCA serves the same purposed as 
the K-nearest neighbors algorithm, which makes no 
assumptions about the shape of the distribution of signals. So 
it can improve the estimate performance of cluster quality of 
spikes to some extent. In this method, each spike was firstly 
preprocessed through up-sampled, aligned and normalized; 
Then, the features of spike waveform were extracted by 
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wavelet transform and Kolmogorov-Smirnov test; Finally, 
the quality of cluster was estimated through the NCA. 
Simulations and real data from primary visual cortex (V1) of 
rats were used to demonstrate the utility of this method. 

2. MATERIALS AND METHODS 

2.1. Real Data 

 The real data were collected using a 16-channel 
microelectrode array (Microprobe Inc., 2×8 platinum-iridium 
microwire array, 250 µm inter-electrode spacing, electrode 
impedance at 1 kHz equals 0.5～l.0 MΩ) and recorded from 
experiments performed on V1 anesthetized Long Evans (LE) 
rats. All experimental procedures were approved by Life 
Science Ethical Review Committee of Zhengzhou 
University. Neural signals were amplified and filtered with a 
computer-controlled multichannel amplifier (Cerebus

TM
, 

Blackrock Microsystem Inc.). Spike signals were band-pass 
filtered at 0.25～5 kHz by a digital two pole Butterworth 
filter and sampled at 30 kHz. The implant procedure and 
recording conditions were described elsewhere [11]. 

 Threshold amplitude crossing was used to detect the 

spikes and the threshold was defined as 4 n  [12].

median{ / 0.6745}n x  , where x  is the bandpass filtered 

signals and 
n  is an estimate of the standard deviation of 

background noise. And each spike was represented by using 

2.1 ms (64 sampling points). The spikes were sorted by 

WaveClus approach. The WaveClus, which was proposed by 

Quiroga et al. [12], is an unsupervised spike sorting 

algorithm that combines wavelet transform and 

superparamagnetic clustering. 

2.2. Synthetic Data 

 To test effectively the performance of proposed method, 
the simulated data from previously published data were used 
(Quiroga et al., publicly available online, 
http://www.vis.caltech.edu/～rodri/publications) [13]. The 
simulated data include four sets of simulated extracellular 
recording signals with a sampling rate of 24 kHz and the 
noise level determined by background noise’s standard 
deviation set to 0.05, 0.1, 0.15 and 0.2. Each simulation 
contains three distinct dominant single-unit spikes with 
normalized amplitude. In all simulations, three distinct spike 
trains have a Poisson distribution of inter-spike intervals 
with the mean firing rate of 20 Hz and the refractory period 
between spikes within the same category was set to 2 ms 
[12]. 

2.3. Neighborhood Components Analysis 

 Neighborhood components analysis proposed by 
Goldberger and colleges [10], which is a supervised learning 
method for clustering multivariate data into distinct classes 
according to a given distance metric over the data. The NCA 
aims at finding a distance metric that maximizes the leave-
one-out error for a stochastic variant of K-nearest neighbors 
by finding a linear transformation of the input data. The key 
insight to the algorithm is to find a matrix A that corresponds 
to the transformation by differentiable objective function.  

 Setting consists of n  real-valued input vectors 
1, , nx x  

in R
D 

and corresponding class labels 
1, , nc c . And each 

vector 
ix  selects another vector 

jx  as its neighbor with 

some probability 
ijp  which was defined using a softmax 

over Euclidean distances in the transformed space,  

2

2

exp( )
, 0,

exp( )

i j

ij ii

i kk i

Ax Ax
p p

Ax Ax


 
 

 
 (1) 

where   denotes Euclidean distances. Under this stochastic 

selection rule, we can compute the probability 
ip  that vector 

jx will be correctly classified, 

i

i ij

j C

p p


   (2) 

where { }i i jC j c c   denote the set of points in the same 

class as i . 

 The objective that we maximize is the expected number 
of points correctly classified under this scheme, 

1

( )
n

i

i

f A p


  (3) 

which is the differentiable cost function. Then A can be 
obtained using an iterative solver, such as conjugate gradient 
descent. The NCA used a probabilistic way to obtain the 
differentiable cost function, in other words, the cost function 
can be calculated by the average probability that every point 
in sample set belongs to the same set. 

2.4. Quality Metrics Based on Neighborhood 
Components Analysis 

 In extracellular recordings, spikes recorded on a 
microelectrode represent a mixture of spikes obtained from 
one or more neurons and some non-neural spikes, such as 
noise events from motion artifacts, electromyographic 
activity, electric field pickup and so on [14]. In this study, a 
quantitative metrics based on NCA was proposed for 
evaluating cluster quality of spikes. Note, the aim of NCA is 
not only to discover new features which could be of interest, 
but to also use the idea of NCA to estimate the probability 
that every event is correctly classified, and further to 
quantify cluster quality. The purpose of using NCA is always 
the data visualization and fast classification [14] but here we 
are discussing it from the cluster quality evaluation 
perspective. 

 Setting k  spikes 1, , ks s  from m  neurons are recorded 

by a microelectrode and corresponding class labels 
1, , kc c  

in (1 )iN c m   . In other words, k  spikes are sorted to m  

clusters 
1, , mC C . To reduce the variability of spike 

waveforms from the same neuron due to discrete sampling of 

analog traces, we firstly up-sampled the data using cubic 

spline interpolation, the factor was fixed at 2. Then, all 

events were aligned by the point of maximum amplitude and 



62    The Open Biomedical Engineering Journal, 2014, Volume 8 Liu et al. 

normalized by standardized z-scores. All spikes after being 

prepressed were simply sorted two clusters, spike cluster and 

noise cluster. The spike cluster is a cluster classified as a 

single unit and the noise cluster is a cluster of events not 

classified with that unit in multi-units. 

 For each spike, a wavelet transform was calculated. A 
four-level multiresolution decomposition was implemented 
using Haar wavelets. The Haar wavelets were chosen due to 
their compact support and orthogonality, which allow the 
discriminative features of spikes to be expressed with a few 
wavelet coefficients and without a priori assumptions on the 
spike shapes. Thus, the Lilliefors modification of a 
Kolmogorov-Smirnov (KS) test [15] was used to select the 
optimal coefficients that best separate the different spike 
classes. The goal of this step is to reduce the differences 
among spikes from the same clusters and increase the 
differences among the different clusters, and improve 
estimation precision. In our method, the first 10 coefficients 
with the largest deviation from normality were used. For 
specific details please see reference [12]. 

 For a given class, 
kC  contain 

kN  spikes, firstly 

computing the similarity between each event 
xs  in spike 

cluster, 
x ks C , to all other events 

ys  in noise cluster, 

1 1 1y k k ms C C C C  , 

2

similarity( , ) exp( ),x y x ys s s s     (4) 

where   is the Euclidean distance between vectors 
xs  and 

ys . The parameter   is a gain contrast ( 0    ) that sets 

the gain of this stretch. For a given event
xs , when 0  , all 

events are similar and similarity ( , ) 1x ys s  . On the other 

hand, when   , all events are dissimilar and similarity

( , ) 0x ys s  . Here, 
00.9 d   , 

0d  is the average Euclidian 

distance in spike cluster. 

 In order to turn the above similarity index into a 
probability-like quantity (positive values that sum to 1), the 
normalization was performed by the following formula, 

similarity( , )
( ) , ( ) 0,

similarity( , )

x y

x x

x zz x

s s
P y p x

s s


 


 (5) 

where 1z ms C C . Note that here the similarity index 

was normalized by the sum of the similarity index between 

xs  and all other events from multiunits were recorded 

simultaneously. 

 For each event in spike cluster, 
xs , all the normalized 

similarity values ( )xP y  were summed for all the ys  in the 

kC  cluster, 

( ) ( )
y k

x

s C

P x P y


  , (6) 

where ( )P x  is the probability that spike xs  belongs to this 

cluster. The calculation of ( )P x was illustrated in Fig. (1). 

 Finally, quality of the cluster is computed as, 

1
NCA ( )

x ks Ck

P x
N 

   (7) 

and can be intuitively considered as the average probability 

that an event classified as a spike belongs to the cluster. The 

range of the NCA is from 0 to 1. If NCA 1 , which means 

a better cluster quality, in other words, with a small distance 

among spike events, and a large distance between them and 

noise events; If NCA 0 , it means a worse cluster quality, 

i.e. events from spike cluster are surrounded by the noise 

events. 

 Fig. (1) depicts an illustration of the calculation of ( )P x . 

Correctly categorized events are shown in Fig. (1A), false 

positive and false negative errors are shown in Fig. (1B and 

C), respectively. If noise events are classified as spikes by 

sorting algorithms (false positive errors), that are nonetheless 

close to noise cluster. The ( )P x  value would be reduced, 

due to its proximity to the other noise events, thus will 

reduce the overall NCA value (see Fig. (1B)). Likewise, 

when spikes are missed (false negative errors), they are close 

to spike cluster. As a result, events in the cluster that are 

close to such misses will be reduced ( )P x , which in turn 

again reduce the overall value of NCA (see Fig. (1C)). 

2.5. Quality Metrics Based on Isolation Distance and Lratio 

 This subsection described two measures used to compare 
with the NCA, namely isolation distance and Lratio, and a 
complete description of the two methods can be found in [4]. 
The isolation distance is a measure of how well-separated a 
cluster is from the rest of the data set and Lratio indicates the 
distribution of non-cluster spikes around a cluster. 

 For cluster c , containing 
cn  spikes, the isolation 

distance is defined as the squared Mahalanobis distance of 

the -thcn  closest non-c spike to the center of c . The squared 

Mahalanobis distance is calculated as, 

2 T 1

, ( ) ( )i c i c c i cD x x     , (8) 

where 
ix  is the vector containing features for spike i , and 

c  is the mean feature vector for cluster c . c  is the 

covariance matrix of spikes in cluster c . The isolation 

distance is not defined when cn  is greater than the number 

of non-cluster spikes. A higher value indicates that non-

cluster spikes are located farther away. Note that the value of 

isolation distance is not normalized against cluster size, so 

that clusters with a large number of spikes will tend to have a 

higher isolation distance. 

 Lratio is calculated as follows for cluster c , 

2
d.f.

2

ratio ,

1
( ) (1 CDF ( )),i cx

i cc

L C D
n 

   (9) 

where 
2

,i cD  is the squared Mahalanobis distance between 

non-c spike i  and the center of c ;  
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 2
d.f.

CDF
x

is the Chi-squared cumulative distribution 

function describing the distribution of spikes in cluster c . 

The number of degrees of freedom is equal to the number of 

features used in the cluster space. A low Lratio indicates that 

there is a relatively empty space between the cluster and 

other spikes in the data set. Therefore, a lower Lratio and a 

higher isolation distance together indicate better cluster 

quality. 

 In addition to isolation distance and Lratio, the SNR was 
calculated for cluster c . The calculating formula of the SNR 
is as follows [3]: 

1

max( ) min( )1
SNR

2 std( )

cn

i i

ic i

s s

n 





  (10) 

where is  is a waveform vector of spike i ; std( )i is the 

standard deviation of the noise i , i is s   is the average 

spike waveform in cluster c . The SNR is a traditional 

method for evaluating quality of a cluster, a low SNR 

indicates worse cluster quality. 

3. RESULTS 

3.1. Validation of Algorithm by Simulation Data 

 To evaluate the performance of the proposed algorithm, a 
signal with the noise level of 0.1 was selected, which 

contains 3 well-sorted spike clusters and 521 spikes. The 
events which were included in a circle of radius r  around 
center of a given cluster composed the spike cluster and the 
rest of the events composed the noise cluster. The false 
negative and false positive errors could be simulated as the 
radius increase or decrease. The results are shown in Fig. (2). 
The principal component (PC) projections, spike waveforms 
and two-dimensional histogram of waveforms are shown in 
Fig. (2A, B and C), respectively. In Fig. (2A), the red and 
black points represent events in the spike cluster and the 
noise cluster respectively. Note that the PC features only for 
representing conveniently representing the signals, other 
features, such as peak amplitude, energy, wavelet 
coefficients and so on, can also be selected. 

 Fig. (2D) shows the performance of the NCA and ACC 
methods. The ACC was defined as [16] ACC = TP/(TP + FN 
+ FP), where TP (True Positive) indicates the number of 
spikes which were classified as the spike cluster; FN (False 
Negative) indicates the number of spikes which were 
classified as the noise cluster, FP (False Positive) indicates 
the number of noises which were classified as the spike 
cluster. The ACC provides a quantitative metrics of the false 
negative and false positive errors. The value closer to 1, the 
smaller the errors and the higher the cluster quality. As 
shown in Fig. (2D), as the cluster was moved out of the 
distribution of spikes (see the black circle in (A)), both 
measures improved. When the radius 3.8r  , the value of 
NCA is consistent with the ACC. It is clear that the NCA can 

 
Fig. (1). Illustration of ( )P x  calculation. This figure is a schematic representation. The -x y coordinates represent the m dimensions of a 

waveform from the spike and noise cluster. The gray circles represent spike events in the spike cluster, whereas the gray triangles represent 

points in the noise cluster. The gray square represents a given point in the spike cluster. (A) Schematic representation of correctly categorized 

events. For a given spike 
xs  in the spike cluster (gray squares), the numbers next to each of the other spikes, ys , are ( )xP y . The arrows 

denote the Euclidean distance. ( )P x  for the given point (gray squares), is the sum of all ( )xP y  values for all other spike events (gray 

circles). Note that for events far from 
xs , ( )xP y is infinitesimal, and hence they have only a small influence on the ( )P x . (B) Schematic 

representation of false positive errors. The ( )P x values would be decreased when noise events are detected as the spikes, e.g. the gray circle 

in the down middle corner close to the noise events. (C) Schematic representation of false negative errors. The ( )P x  values would also be 

significantly decreased when spike events are detected as the noises, e.g. the gray triangles in the left middle corner close by the spike events. 
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effectively measure the quality of spike cluster for cases in 
which the number of cluster spikes is not far greater than the 
number of noise events. 

 To further evaluate the performance of the NCA method, 

it was compared with Lratio (LRO), isolation distance (ISD), 

and SNR. Fig. (3) shows a comparison of the cluster quality 

among the NCA, the SNR, the ACC, the ISD and the LRO. 

For an easy comparison among them, the ISD, the LRO and 

the SNR were normalized by their maximum respectively. 

As shown in Fig. (3), with the increase of radius r , the 

values of NCA, ISD and ACC increased at first and then 

decreased, the LRO, by contrast, descend at first and then 

increased, and the SNR increased all along. All methods 

attain the stability value when the ACC reaches its maximum 

value except the SNR. This demonstrates that these methods 

can be successfully used for measuring the cluster quality. 

Compared to other methods, however, the NCA is the 

nearest to the ACC. Although the performance of the LRO 

and the ISD is similar to the NCA, they don’t have a global 

scale to differentiate between good and poor separation. The 

SNR on spike cluster also increased with the radius r , but 

did not provide an unambiguous measure of cluster quality. 

 
Fig. (3). Performance of the NCA, the SNR, the ACC, the ISD and the LRO method as a function of the radius r . 

 
Fig. (2). Comparison of the cluster quality between the NCA and the ACC. (A) Scatter plot of spike waveforms from all events using the first 

two principal components. The red points denote the spike cluster and the black points denote the noise cluster (B). The average waveform 

for each cluster in (A). Thickness of the waveform represents the standard error (C). Two-dimensional histogram of waveforms as in (A). 

(D) Performance of the NCA and the ACC as a function of the radius r  (as shown black circle in (A)). 
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3.2. Validation of Algorithm by Real Data 

 Although the NCA performed well on simulated data, it 

was also important to demonstrate its performance using real 

data. Figs. (4-6) show three signals taken from micro-

electrode array collected in rat V1 area. Fig. (4) shows data 

from the same electrode recording in which a well-separated 

cluster of spikes was observed. Histograms of the projection 

of each cluster onto Fisher’s linear discriminant between the 

spike cluster and the noise cluster are also shown (the linear 

discriminant, H , between the features of spike event s  and 

noise event n  were given by 
1( ) ( )s n s nH       

where 
s  and 

n  are the mean vectors s  and n  are the 

covariance matrices of the features, respectively. The 

projection of an event V onto the linear discriminant was 

given by H V ). The values of LRO, ISD, SNR and NCA 

for spike cluster were indicated through the black text on the 

right top corner of figure. Dots are the measured distribution 

and the solid line is the fitted curve using Gaussian function. 

For both clusters, a very little overlap of the projection of the 

spike and noise cluster was observed, and values of the NCA 

indicated that the clusters were well separated. 

 As can be seen in the PC projections and the histograms 
of the Fisher’s projection, the spike cluster in Figs. (5 and 6) 
are not as well separated as the examples shown in Fig. (4). 
The worst separation was observed in Fig. (6), while Fig. (5) 
had an intermediate separation. The values of NCA agreed 
with this subjective categorization of cluster quality. The 
clusters shown in Fig. (4) had the best quantitative separation 
for both measures, Fig. (5) had an intermediate value, and 
Fig. (6) had the worst values of NCA. These examples 
support the use of these cluster quality measures as an 
objective method for evaluating cluster quality. 

 
Fig. (4). Real data with good separation. (A) Scatter plot of spike waveforms from all events using the first two principal components. The 

spike events and the noise events are indicated by red and black, respectively. (B) Histograms of the projection of each cluster onto Fisher’s 

linear discriminant between the spike cluster and the noise cluster. Dots indicate measured distribution of the projection of each cluster and 

solid line indicates fit curve using Gaussian function. 

 
Fig. (5). Real data with intermediate separation. (A) Scatter plot of spike waveforms from all clusters using the first two principal 

components. (B) Histograms of the projection of each cluster onto Fisher’s linear discriminant between the spike cluster and the noise 

cluster. 
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4. DISCUSSIONS 

 In this study, we presented a quantitative measure of 
cluster quality for evaluating the separation of a cluster from 
other spikes recorded on the same electrode. It is based on 
the idea of NCA to estimate the probability that every event 
is correctly classified and further estimate the cluster quality. 
In this method, the spikes were firstly preprocessed, as being 
up-sampled, aligned and normalized; Then, they were sorted 
as the spike cluster and the noise cluster; Thirdly, the 
wavelet transform and the KS test were used to extract the 
features of spike waveforms; Lastly, the quality of spike 
cluster was estimated by the NCA. The best advantage of our 
method is its range from 0 to 1, which enables easy 
comparison of units recorded at different times and even by 
different research groups. 

 Closer to our proposed method, the isolation score 
algorithm proposed by Joshua and co-workers [8] applied the 
idea of NCA to measure the overlap between the noise  
(non-spike) and spike clusters, and used a nearest-neighbors 
algorithm to estimate the proportion of false positive and 
false negative classifications. However, there are two 
drawbacks of this approach: first, this method was applied 
directly to the spike waveform which reduces the difference 
of spike waveform from different neurons, and the 
performance was much more variable and less reliable; 
second, it applies the time stamps of spike trains and the 
entire analog signals as the initial input, largely increases the 
computation burden. In particular, we showed that the 
method proposed here overcomes these problems, giving a 
more robust estimation and a better performance. 

 In our method, the wavelet-based features were used as 
the input, which did not require the entire analog signals. 
The advantage of using the wavelet transform as a feature 
extractor is that very localized shape differences of the 
different units can be discerned, and the interference of noise 
can be greatly reduced. The information about the shape of 
spikes is distributed in several wavelet coefficients, whereas 
with PCA or other features [4, 17], most of the information 
about the spike shapes is captured only by very few 
variables, such as the first three principal components, which 

are not necessarily optimal to represent signals [12]. Since 
wavelets are a linear transform, therefore all the wavelet 
coefficients yield nearly the same results as the entire spike 
shape, the dimensionality reduction achieved by combining 
wavelets with the KS test may have a broad range of interest 
[12]. 

 The performance of the proposed method was examined 
with simulated signals and it was then applied to real data 
from V1 of rats. With the synthetic signals, the performance 
evaluation was better than the one obtained using isolation 
distance and Lratio. The NCA is consistent with the ACC 
which reflects the real proportion of false positive and false 
negative errors (see Fig. (2) and Fig. (3)), so this shows that 
it correlates with both the false positive and false negative 
errors. For the real data, the NCA can effectively 
discriminate well- and poorly-separated clusters, and its 
value is related to the correct identification of spikes (see 
Figs. (4-6)). Although isolation distance and Lratio are similar 
to the method in this way, they do not have a global scale to 
differentiate between well and poorly isolated units. 
Following Joshua et al. [8], we suggested to exclude units 
with the NCA value below 0.8 in studies whose conclusions 
may be influenced by the quality of the recorded units. 

 Although, the spike detection and sorting technology 
have been rapid development at present, the quality of 
single-unit after clustering is not uniform due to the 
interference of noise with larger amplitude or other neuron 
spikes. In this paper, we used the idea of NCA to provide a 
quantitative method for evaluating cluster quality. 
Unfortunately, the proposed method is invalid for cases in 
which the number of spike events is far greater than the 
number of noise events (see Fig. (2) and Fig. (3)). In future, 
we will conduct research on this question. In most of the 
cases however, we found that the number of cluster spikes is 
lower than the number of the rest. 

CONCLUSION 

 In this paper, a quantitative measure to evaluate spike 
cluster quality was presented and compared with isolation 
distance, Lratio and so on. The proposed method is based on 

 
Fig. (6). Real data with poor separation. (A) Scatter plot of spike waveforms from all clusters using the first two principal components.  

(B) Histograms of the projection of each cluster onto Fisher’s linear discriminant between the spike cluster and the noise cluster. 
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the idea of neighborhood components analysis to quantify 
cluster quality. In this method, we used the wavelet-based 
features to represent the events for reducing the effects of 
noise. Its performance was tested with simulated data and 
real data, and the results proved that it provides better 
metrics for spike as there are no assumptions about the shape 
of the distribution of spikes and insensitivity to the number 
of spikes. Quantitative metrics of cluster quality is a 
necessary step in interpreting studies based on extracellular 
recording, so it is suggested that wider use of quantitative 
measures of cluster quality would likely improve the 
reproducibility of results across laboratories. 
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