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Abstract：In this paper, a novel model for predicting anesthesia depth is put forward based on local field potentials 
(LFPs) in the primary visual cortex (V1 area) of rats. The model is constructed using a Support Vector Machine (SVM) to 
realize anesthesia depth online prediction and classification. The raw LFP signal was first decomposed into some special 
scaling components. Among these components, those containing higher frequency information were well suited for more 
precise analysis of the performance of the anesthetic depth by wavelet transform. Secondly, the characteristics of anesthe-
tized states were extracted by complexity analysis. In addition, two frequency domain parameters were selected. The 
above extracted features were used as the input vector of the predicting model. Finally, we collected the anesthesia sam-
ples from the LFP recordings under the visual stimulus experiments of Long Evans rats. Our results indicate that the pre-
dictive model is accurate and computationally fast, and that it is also well suited for online predicting. 
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1. INTRODUCTION 

 Microelectrode array implant technology is usually 
adopted in the neurophysiological studies of animals. 
Physiological studies show that the anesthesia depth influ-
ences the physiological function of animals and signal acqui-
sition considerably [1]. Accurate prediction of the anesthesia 
depth is very important to maintain the stable anesthesia 
state and ensure consistency of the experiment conditions. 
Therefore, building a predictive anesthesia model is of great 
value for scientific research and clinical application as it can 
offer a new method for monitoring anesthetic levels during 
surgery. 

 It has been well known that anesthetics alters the brain’s 
neuronal activities and causes changes in electrical signals 
[2,26]. Thus, the characterization of the electroencephalo-
gram (EEG) analysis becomes one of the main ways for 
monitoring the anesthesia depth [3,4]. Electrical activities of 
the brain mainly include EEG and local field potentials 
(LFPs). The former is the spontaneous activity recorded 
from the surface of the scalp, and the latter is recorded on the 
brain surface or within the brain. The earliest application 
using EEG signals to monitor the anesthesia depth began in 
1940 [5]. A large number of efforts have been made to de-
velop and test various EEG-derived parameters in different 
analysis methods [4,6]. However, these time, frequency and 
bispectral- domain methods have not considered the non-
linear dynamic behavior of the EEG and complexity of the 
anesthetic effect. The monitoring efficiency is affected by 
sensitivity and specificity decline due to different individuals  
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[7-9]. The bispectral index scale (BIS) [10, 11] effectively 
predicts the status of anesthetic metabolism, but neither the 
transition change from being awake to unconsciousness nor 
the prediction of the anesthesia depth for anesthetics com-
pound is well assessed. Another method in the clinical appli-
cation is the Narcotrend index (NI), which guides us to re-
duce the consumption of anesthetic and shortens recovery 
time in the process of anesthesia [12]. Both of these depend 
obviously on anesthetic and neither can reflect analgesic 
composition in different anesthesia depths. The approaches 
of monitoring the anesthesia depth include the multi-layer 
neural network [13] and the fuzzy neural network [14], al-
though these methods have not considered the non-linear and 
dynamical properties of the brain’s neuronal activities. There 
are many problems to be solved in relation to clinical opera-
tions [15]. Recent advances suggest that electrical activity is 
a manifest of the brain’s complicated nonlinear dynamical 
properties [16]. Therefore, nonlinear dynamical analysis 
methods, such as approximate entropy [17], Kolmogorov 
entropy [18], and combination entropy [19], have been 
widely used for feature extraction of the anesthesia depth. 
However, these methods are computationally expensive and 
are not satisfactory in the case of online monitoring of clini-
cal operations. 

 There are three causes limiting the accuracy of predicting 
the state of anesthesia with the EEG. Firstly, EEG signals 
only represent the integration of function activities in the 
different cortical areas and do not reflect the functional con-
ditions under cortical organization. The EEG based monitor-
ing methods mentioned above are not sensitive to noxious 
stimuli [4]. Secondly, the EEG signals are sensitive to noisy 
overlapping, especially potential electromyographic interfer-
ences. Finally, the frequency band of the EEG, always below 
30 Hz, restricts the application at higher frequencies, such as 
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the  -band, which supplies more information for precise 
analysis of the anesthesia depth [20]. LFPs recorded from 
intracranial techniques represent a summation of the multiple 
action potentials in the extracellular space around neurons 
and reflect to noxious stimuli more effectively. Matthias 
Kreuzer indicated that LFPs form different channels which 
might cause excessive synchrony with the deepening of an-
esthesia and could provide additional information for detect-
ing the levels of anesthesia [21]. Hudetz found that the cross-
approximate entropy (XApEn) derived from LFPs is similar 
to the result deduced from EEG in different cortical areas 
[22,23]. In addition, LFPs are less contaminated by the elec-
tromyographic activity and can offer higher frequency in-
formation which can reflect the effect of anesthesia accu-
rately [24].  

 According to the purpose of study the neural mechanism 
of visual pathway, the microelectrode array implant technol-
ogy is adopted to record LFP signals in primary visual cor-
tex(V1) of rats. Accurate prediction of the anesthesia 
depth is very important to maintain the stable anesthesia 
state in order to ensure consistency of experiment condition 
and determine the suitable time to supply the anesthetic. 
Therefore, a predictive model of anesthesia on the basis of 
LFPs is put forward in this paper. It is constructed using a 
Support Vector Machine (SVM) to realize anesthesia predic-
tion in real time. First of all, taking into account the raw 
LFPs’ non-analytical, non-linear and non-stationary proper-
ties, the LFPs were decomposed into special scaling compo-
nents which contained higher frequency information well 
suited for more precise analysis of the anesthetic depth by 
wavelet transform. The influence on different scaling com-
ponents was analyzed for different anesthesia depths. Sec-
ondly, LempeI-Ziv complexity measures were extracted by 
complexity analysis in order to achieve online predictive 
anesthesia depth. At the same time, two frequency-domain 
parameters were introduced as the criteria to improve predic-
tion precision. All of the characteristics extracted above 
formed the input vector of the model that used cross valida-
tion (K-CV) to optimize model parameters. Finally, the pre-
dicting model was acquired through samples training from 
LFPs recorded in the visual stimulus experiments of Long 
Evans rats. The results demonstrated that this model can pre-
dict the anesthesia depth accurately in real time and illus-
trated that anesthesia might impede proper information ex-
change between cortical areas [25], impair information inte-
gration function of the brain and suppress consciousness 
[28,29]. Our results are in agreement with previous studies. 

2. MATERIALS AND METHODS 

2.1. Surgery and LFP Data 

 Six adult Long Evans rats weighing 260±20g were used 
in this study. The rats were maintained on a 12h light, 12h 
dark cycle, with free access to food and water. Food was 
deprived one day before the experiments. This study was 
approved specifically by the Animal Care and Use Commit-
tee of the Zhengzhou University, and conducted in the Ani-
mal Center of Henan Province. After receiving atropine sul-
fate (0.02-0.05mg/kg, intravenously (IV)), the rats were 
anesthetized with ketamine hydrochloride (50mg/kg initially, 
maintained at 10mg/hr, IV) and were secured in a stereotaxic 

apparatus. Additional ketamine hydrochloride was added 
upon the anesthetic level and the stability of LFPs were re-
corded in the vision stimulation experiments. Body tempera-
ture was maintained at 37°C- 38°C with a thermostatically 
controlled heating pad. The heart rate was monitored con-
tinuously. A craniotomy was made over the V1 area (coordi-
nates: 0–4mm anterior to lambda and 2.5–4.5mm lateral to 
the midline) and the dura was removed under a high-
magnification dissecting microscope. LFPs were obtained 
through microelectrode array ((MEA), Microprobe 2×8, 
impedance 0.50~1.0M ) implanted in Long Evans rats’ V1 
and recorded through a Cerebus 128-channel acquisition 
system (Blackrock microsystems, Salt Lake, USA). The mi-
croelectrode array was aimed at layer 4 in the V1 area. The 
LFP signals recorded from the electrodes were pre-
amplified, filtered (0–250 Hz) and digitized at 2 kHz.  

2.2. Auxiliary Decision Criteria of Anesthesia State  

 Although in recent years the anesthesia depth monitor 
based on brain electrical activities has developed rapidly, 
clinical signs and symptoms are still the basic method of 
auxiliary anesthesia depth judgment [31]. Among them, 
heart rate and tail flick that assess pain level (response to 
noxious stimuli), were used to estimate anesthesia depth 
[32]. These two parameters were sampled every 20s and 60s, 
respectively, and were recorded for six rats after small doses 
of supplement anesthetic injection. In this study, we consid-
ered tail flick latency Ts < 5 s and heart rate HR > 380 
beat/min as the standard of a 'light' anesthesia state, and the 
corresponding tail flick latency Ts > 8 s and heart rate HR < 
360 beat/min as the criterion of a 'deep' anesthesia state. The 
remaining period was considered as a transition state (includ-
ing induction phase and recovery phase). In the whole ex-
periment process, the 'light' anesthesia phase was the period 
of about 0s-600s after supplement anesthetic, and the 'deep' 
anesthesia phase was the period of about 600s-2170s. Then, 
the recovery phase (2170s-) was also considered as a 'light' 
anesthesia state (as shown in Fig. 2). 

2.3. Analysis Methods 

2.3.1. Channel Selection  

 We utilized the cross-correlation function to measure 
their synchronization between different channels in order to 
quantify the effects of signal independence in different levels 
of anesthesia.  

 Pearson cross correlation coefficient is defined as 

( )( )
1

2 2( ) ( )
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where x and y are the mean of the inter-

vals 1 2[ , , ]nx x x x  and 1 2[ , , ]ny y y y  .  

2.3.2. Building a Predictive Anesthetized State Model Based 
on Local Field Potentials in Primary Visual Cortex 

 LFPs contain enough information to reliably predict the 
anesthetized state; however, the key problem is to construct a 
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reasonable predictive model, extract the effective features 
and establish statistical training samples based on LFPs to 
realize classification accurately. We set up an SVM model to 
forecast the anesthetized states because of its many advan-
tages in solving high dimensional and nonlinear pattern rec-
ognition problems through finite samples of SVM. 

 The designed prediction system consisted of an SVM 
classifier for off-line training and an on-line prediction sys-
tem. LFPs had to be recorded from various states of the Long 
Evans rats and a specific database had to be built for off-line 
training before the system went into operation. These train-
ing samples can be updated in time in accordance with actual 
condition. Input vector [ (1) (2), ( )]kX X X X n    was the 

feature vector extracted to represent the anesthesia depth 
from the k th LFP segment. The feature extraction algorithm 
will be explained in detail in section Characters’ Extraction. 
Output ( 1)Y k   was the prediction result (slight anesthesia, 

Label 0 and deep anesthesia, Label 1) of the model in the 
( 1)k th sample period. 

 To separate the set of training samples into two separate 
classes, let 

1{( , ) , { 1,1}}n l
i i i i iD X Y X R Y      

{ 1,1}iY    (2) 

 In order to keep the balance between experience risk and 
generalization, non-negative variables i were introduced to 

form a penalty function,
1

l

i
i

c 

 , where i  is a measure of the 

misclassification errors. The optimization problem was con-
verted into maximizing the functional by the saddle point of 
the Lagrangian maximize 
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with constraints 
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where i is the Lagrange multipliers. 

 An inner product in feature space has an equivalent ker-
nel in input space, 

( , ) ( ), ( )i j i jK X X X X    (5) 

provided certain conditions hold. If K is a symmetric positive 
definite function, which satisfies Mercer’s Conditions, then 
the kernel represents a legitimate inner product in feature 
space. Suppose the inner product ( ) ( )i jX X  is applied in 

the training algorithm, the subject function is 

Maximized 
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 The corresponding classification function also becomes 
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 Kernel ( , )i jK X X is an inner product between input vec-

tor iX and support vector jX ; it can be chosen from many 

different mappings according to the requirements. The cross-
validation method was used here for optimizing the two 
variables, penalty factor c and parameter g of the kernel. 

2.3.3. Characters’ Extraction 

2.3.3.1. Decomposition of Raw LFPs by Wavelet Transform 

 A raw LFP signal was decomposed into six consecutive 
scaling components ( 0.3-3.9Hz, 3.9-7.8Hz, 7.8-15.625 
Hz,  15.625-31.25Hz, 1 31.25-46.8Hz and 2  46.8 - 

125Hz) by nine decomposition orders in order to analyze the 
effects of different frequency spectra under anesthesia. The 
orthogonal wavelet decomposition formula of signal ( )f t  is 

given by the following equation 
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where ,j kc and ,j kd  are the scaling coefficients and wavelet 
coefficients, respectively. h and g are called the filter group, j 
is the number of layers of decomposition and N is the num-
ber of data points in the signals. 

 The fast algorithm of Mallat's discrete dyadic wavelet 
transform is defined as 

  
n

nknj
n

nknjnj gdhcc 2,2,,1  (9) 

2.3.3.2. Lempel-Ziv Complexity (LZC) Analysis of LFP 

 In Lempel–Ziv’s paper, complexity analysis, which uses 
nonlinear dynamics analysis, was adapted to characterize the 
information of electrical activities of the brain and to reveal 
the intrinsic nature under anesthesia. It is based on a coarse 
graining of the measurements and is well suited for clinical 
implementation due to its high computational speed [27]. 

 Before calculating the complexity measure LZC of the 
LFP signal or its scaling components, described as f , the 

digital signal is first transformed into a sequence minf  whose 

elements are only a few symbols. Here, we only consider it 
as a 0-1 string according to the mean value of the data 
points maxf . SEFf measures the number of distinct patterns that 

must be copied to reproduce a given sequence. Briefly, a 
sequence P is scanned from left to right, and GFf is increased 

by one unit every time a new subsequence of consecutive 
digits is encountered in the scanning process. 

 In order to obtain a complexity measure which is inde-
pendent of the sequence length, we used a normalized com-
plexity measure. In reference [20], it has been proved that for 



74    The Open Biomedical Engineering Journal, 2013, Volume 7 Shi et al. 

a 0–1 sequence, while n  , the upper bound of ( )C n is 
given by  

2

lim ( ) ( )
logn

n
C n b n

n
   (10) 

and ( )C n can be normalized via 

( )

( )

C n
LZC

b n
  (11) 

 The normalized complexity measure reflects the rate of 
new pattern occurrences with time and is usually less than 
one. It is independent of the amplitude and the length of the 
signal. 

 In this study, the LFPs were re-sampled at 500 Hz in or-
der to improve the calculation speed and an LZC was calcu-
lated for every 10s’ LFP signals. 

2.3.3.3. Frequency Domain Analysis of LFP 

 The ratio value and  ratio value were extracted in the 
frequency domain as auxiliary parameters of the characteris-
tic vector for predicting anesthesia depth. They are defined 
in equations (12) and (13), respectively. 
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log( (31 48 ) / (7.8 16 ))xx xxratio P Hz P Hz     (13) 

 The variations of these two frequency domain parameters 
indicate that the deepening anesthesia depth can impair the 
peripheral nerve impulse conduction, enhance synchroniza-
tion wave signals’ promotion, and dampen non-
synchronization waves after the anesthetic injection. There-
fore, these two parameters were introduced into the input 
vector to improve the precision of estimation. 

2.3.3.4. Establishing Training Samples Database  

 According to the above requirements for constructing the 
forecasting model and characteristic vector extraction, LFPs 
were chosen from six experimental rats in the V1 area under 
different anesthesia states. After the signal’s pretreatment, a 
total of 138 training data sets (including 59 samples in slight 
anesthesia and 79 samples in deep anesthesia), and 139 test-
ing data sets (slight anesthesia 60, deep anesthesia 79) were 
obtained. Each training sample included the characteristic 
vector derived from LFP and the corresponding anesthesia 
state.  

2.4. Statistical Analysis 

 Kruskal-Wallis’ non-parametric test was introduced to 
analyze statistically significant differences in complexity 
measure LZC between the light anesthesia and deep anesthe-
sia states. This was followed by multiple comparisons using 
the Mann-Whitney rank sum test to identify where the dif-
ferences lay. A probability value of less than 0.05 was con-
sidered statistically significant. Data analysis was imple-
mented in the Matlab development environment using both 
built-in functions and functions developed in-house. 

 

3. RESULTS 

3.1. The Correlation of the LFPs Between the Recording 
Channels Under Different Anesthesia Depths 

 LFPs recorded for 10s in different periods after anes-
thetic injection are shown in Fig. (1). The top and bottom 
plots represent slight anesthesia and deep anesthesia, respec-
tively. With the increasing anesthesia depth, the amplitude of 
low-frequency signal components was enhanced greatly and 
the amplitude of high frequency components was reduced, as 
shown in Fig. (1) (A, B, C and D). We found that the coher-
ences between any two channels in deep anesthesia state 
were higher than those in slight anesthesia as a whole (see 
Figs. 1E and 1F). In particular, cross-correlation values of 
complexity measure of the LFPs were significantly higher 
than those of the LFPs. For example, the cross correlation 
value between the LFPs of channel 7 and channel 8 was 
0.616, but the cross-correlation value of complexity measure 
was 0.9454. This illustrates that the complexity measure ex-
tracted from LFP has greater relevance to the anesthesia 
state, and that it can describe brain activities satisfactorily 
[20,21,25]. 

3.2. Complexity Measure of LFPs Under Different Anes-
thesia Depth 

 The Complexity measure LZC adopted in the paper is 
very simple and fast. The average calculation time of LZC 
for 10s LFP can satisfy the requirements of online operation. 

 The brain’s activities are suppressed severely and its 
LFPs are dominated by low frequency waves in deep anes-
thesia. Consequently, LZC declined accordingly. It can be 
observed that LZC worked well in tracking the level of anes-
thesia, especially at the state-turning points (from light anes-
thesia depth to deep state or vice versa). Fig. (2) describes 
LZC against time for a rat’s LFP recorded separately in the 
16 channels during the anesthesia process. 

3.3. Comparison of Anesthetic Depth Indexes 

 There are several indexes of anesthetic depth developed 
to translate the information of the complex LFP signals into 
a number. The spectral edge frequency(SEF) that consists of 
the power spectrum in the 95% quantile is a popular measure 
used to estimate the depth of anesthesia. Gravity Fre-
quency(GF) is another measure which can reflect the migra-
tional features of signal energy during the process of anes-
thesia. Two calculation formula are defined as follows (14) 

and (15) respectively. 
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where ( )P f  is the estimate of power spectral density, f is 

the corresponding frequency value, minf and maxf  are the 

minimum frequency and the maximum frequency value of 
LFP signals respectively. SEFf  is the spectral edge frequency 

and GFf  is the center frequency values, for the gravity fre-

quency.  

 Approximate entropy(ApEn), a measure of signal com-
plexity and regularity, quantifies LFP signals changes during 
anesthesia. A more detailed description of the PE calculation 
can be found in the published works [34]. 

 The results of three indexes of anesthesia depth(SEF, GF 
and ApEn) derived from the V1 recordings were presented in 
Fig. (3). The trends of three time-varying indexes are coinci-

dent with each other at each study period. In the start period 
after supplement anesthesic, three indexes tended to decrease 
similarly, and then remained steady-state. At last, the in-
dexes increased rapily at the recovery phase. However, 
higher coherence existed between ApEn and LZC with the 
increasing deep anesthesia. The SEF and GF values had not 
the best correlation with anesthetic degree. The greatest dis-
advantage of ApEn is its slow computational speed which 
can’t be satisfied with the requirement of real-time monitor-
ing. The average computational time of ApEn value derived 
from 10s recordings is about 7.29 second and the calculated 
time of LZC value at the same condition is about 0.12s. 
Therefore, we adopted complexity measure LZC Value as 
characteristic extracted from LFP to represent anesthesic 
degree in this study.  

0 10 20 30 40 50
-70

-60

-50

-40

-30

-20

-10

Hz

P
S

D

0 10 20 30 40 50
-80

-60

-40

-20

0

20

Hz

P
S

D

 
Fig. (1). The signal characteristics of neocortical local field potentials in V1 area. (A) and (B) 10s example of raw local field potentials from 
16 electrodes, filtered between 0.3 and 250 Hz, from the same rat under two different anesthesia states. 20s-30s LFP segments were illus-
trated in (A) after ketamine intravenously, and the rat was considered in light anesthesia state during this period of time. 1000s-1010s LFP 
segments were illustrated in (B) after ketamine intravenously, and the rat was considered in deep anesthesia state during this period of time. 
(C) Power spectral density (PSD) in light anesthesia state plots of all raw data segments(shown in A) selected for analysis (only channel1). 
(D) Power spectral density (PSD) in deep anesthesia state plots of all raw data segments (shown in B) selected for analysis in the same chan-
nel. (E) Cross correlation of the raw LFP segments of 16 chnnels depicted in A. Each color-coded matrix contains the values obtained from 
non-redundant pairwise combinations of recording sites (except auto-combinations). (F) Cross correlation of 16 chnnels in deep anesthesia 
state (depicted in B).  

 

Fig. (2). The values of complexity measure LZC change against time during the whole anesthesia process of 16channels. The black thick 
solid line in the middle represents the mean LZC extracted from LFP signals of 16channels. Gray area describes the variation range of LZC 
for all 16channels. In the whole experiment process, the 'light' anesthesia phase was the period of about 0s-600s after supplement anesthesic 
and the 'deep' anesthesia phase was the period of about 600s-2100s, then recovery phase(2100s-) is also consider as  'light' anesthesia state. 
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3.4. Predictive Effect of Anesthesia Depth with the Pre-
dicting Model Based on SVM  

 In order to assess the predictive performances for anes-
thesia depth, results from three different detection schemes 
are listed in Table 1. The accuracy is the lowest (92.08%) 
when only using the optimal complexity threshold of raw 
LFPs. If we use an input vector consisting of an LZC of raw 
LFP and six LZC values of different frequency components 
for the SVM to predict anesthesia depth, the accuracy is 

95.68%. On the basis of the seven characteristics discussed 
above, two frequency domain parameters ( ratio and  ra-
tio values) were introduced into the input vector of the SVM 
model; the highest accuracy achieved was 97.84% with the 
proper selection of kernel function and optimal parameters (c 
and g). 

 The SVM model worked well in tracking the same rat’s 
anesthesia depth and could also provide the replenishment 
time of the anesthetic and proper period of data analysis in 

Table 1. Comparison of Performances of Different Detection Schemes for Six LE Rats 

Detection Schemes Characters’ Extraction Kernel Function Size of Testing 
Set 

Error Num-
bers 

Prediction 
Accuracy 

 light60 4 Direct complexity 
analysis of raw LFP 

Optimal complexity threshold of 
raw LFP 

 Deep79 7 

92.08% 

light60 1 linear 

Deep79 5 

93.52% 

light60 6 polynomial 

Deep79 0 

93.52% 

light60 2 Rbf 

Deep79 5 

94.96% 

light60 2 

Complexity analysis 
using wavelets and the 

SVM 

Complexity of raw LFP and com-
plexities of six different scaling 

components 

sigmoid 

Deep79 4 

95.68% 

light60 2 linear 

Deep79 8 

92.80% 

light60 2 polynomial 

Deep79 7 

93.52% 

light60 2 rbf 

Deep79 5 

95.68% 

light60 2 

Complexity analysis 
using wavelet, spectral 
analysis and the SVM 

Complexity of raw LFP and com-
plexities of six different scaling 
components, delta ratio and beta 

ratio 

sigmoid 

Deep79 1 

97.84% 

 

Fig. (3).Three indexes of anesthetic depth  derived from the V1 recordings during the whole anesthesia process, (A) Time-varying SEF  (B) 
Time-varying GF and (C) Time-varying ApEn 
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visual stimulus experiments. Fig. (4) shows the conversion 
between two kinds of anesthesia states. To balance interfer-
ence-resistance and sensitivity, switching of states requires 
that the same state is predicted 2-3 times. It can be seen that 
the anesthesia state-turning points will be predicted 10-20s in 
advance, which is largely predicted by the SVM model. 

3.5. The Influence of Anesthesia Depth on Visual Stimu-
lation Experiments 

 The visual stimulation experiments were carried out in 
order to analyze the influence of visual perception informa-
tion transfer and processing. The sinusoidal drifting grating 
with 12 different orientations (in step of 30°, spatial fre-
quency of 0.1 cycles/°, random play) was adopted as visual 
stimulus. A grating stimulus and gray screen each lasted 1s. 
Each test sequence was repeated 30 times in the same condi-
tion. Offline analysis was performed using Matlab. The sin-
gle unit activity (spike) was obtained using band-pass filter-
ing between 0.25-7.5kHz, digitized at 30 kHz, threshold de-
tecting and spike sorting in the pretreatment.  

 Firstly, 240 segments of LFP were collected in four dif-
ferent conditions, including spontaneous LFP signals in the 
light anesthesia state, spontaneous LFP signals in the deep 
anesthesia state, and stimulus evoked LFP signals in two  
 

different anesthesia states, respectively. There was a statisti-
cally significant difference (P<0.05) in complexity measured 
LZC between the light anesthesia and deep anesthesia state. 
However, there was no significant difference (P>0.05) in 
LZC computed from spontaneous LFP signals and stimulus 
evoked LFP signals in the same anesthesia state. Mean group 
difference was very small (about 0.06) in the deep anesthesia 
state, while the mean group difference was larger (about 
0.25) in the light anesthesia state. 

 On the other hand, the orientation selectivity of each unit 
was analyzed statistically under two kinds of the anesthesia 
depth. The results are presented in Table 2. Most neurons 
represented non-orientation selectivity under the deep anes-
thesia but had optimal orientation obviously in the light an-
esthesia state due to their enhancing firing rate. For example, 
the average firing rate of neuron 6 was very low and had 
non-orientation selectivity under the deep anesthesia state, 
but its firing rate significantly increased under the slight 
state. Its optimal orientation was 120ºand its orientation tun-
ing curve is shown in Fig. (5). Further, the optimal orienta-
tion could be in error to a certain extent because the firing 
rate can be changed due to many causes, for example, 
whether or not the attention mechanism was taking place in 
the visual perception, the rat’s physical condition, or other 
unknown factors. 

 

Table 2. Comparison of Orientation Selectivity of the Neurons under Different Anesthesia Depth 

Slight (Label 0) Deep (Label 1) Slight (Label 0) Deep (Label 1) Channel 
Number 

Ori Fre OSI Ori Fre OSI 

Channel 
Number 

Ori Fre OSI Ori Fre OSI 

1 Non 2 0.50 270º 4.5 0.87 9 210º 17 0.89 Non 1 0.33 

2 Non 6 0.48 90º 6 0.71 10 Non 8 0.23 Non 1 0 

3 120º 4.5 1.0 Non 1 0.06 11 90º 15 0.82 Non 0.5 0 

4 30º 6 0.85 Non 1.5 0.2 12 210º 31 0.67 240º 16.5 0.79 

5 Non 2 0.23 Non 1 0 13 120º 21.5 0.81 Non 0.5 0 

6 120º 22 1.0 Non 1.5 0 14 120º 26 1.0 Non 2 0 

7 210º 8 0.88 Non 0.5 0 15 240º 26 0.75 270º 7.5 0.87 

8 210º 9 0.71 Non 1 0 16 Non 4 0.48 Non 2 0 

Note: Ori represents optimal orientation; Fre is maximum firing rate in the optimal orientation; OSI means orientation selectivity index. 
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Fig. (4). State-turning between two kinds of anesthesia states, (A) Change from light anesthesia state to deep state. (B) Change from deep 
anesthesia state to light state. 
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4. DISCUSSION 

 In this paper, a model based on the SVM was proposed to 
predict the anesthesia depth. First, the LFPs were decom-
posed into sub-waves in several frequency bands by wavelet 
transform. Then, some features representing the anesthesia 
states were extracted by nonlinear dynamic complexity 
analysis. The input vector of the model was composed by 
these features and two additional feature parameters in the 
frequency field. The experimental results of Long Evans rats 
demonstrated that the model could predict the anesthesia 
depth correctly through training samples and logical classifi-
cation design in order to improve the adaptive ability of the 
model. 

 We have found several characteristics through analyzing 
the experimental data. With the deepening of the anesthesia, 
the LFPs recorded simultaneously in the same experimental 
animal tended to be more consistent with each other, and the 
low frequency components of the PSD were increased. 
While the correlation of complexity measures calculated 
from LFP of closely spaced intracortical sites (16 channels) 
was higher than the correlation of the raw LFPs of 16 chan-
nels, the threshold of LZC representing different anesthesia 
states would change in a certain range. This finding demon-
strates that anesthetics coerce small cortical sub-networks, 
here represented by rats’ primary visual cortex, into uniform, 

synchronized activity patterns. The complexity analysis of 
those sub-waves in each frequency bands showed that the 
complexity measure LZC in γ-band was more sensitive than 
other bands. As a result, the high frequency component (γ-
band) comprises important information of anesthesia states 
and is suitable for more accurate prediction. The predictive 
model has acquired more accuracy by taking into account the 
individuals’ diversities. It is able to satisfy the monitory de-
mand of the animals’ anesthesia state during surgery and 
visual recording in vivo. This result is consistent with neuro-
biological research, in which the γ-band component of LFP 
plays an important role in the higher cognitive process of the 
brain, such as the receiving, encoding and processing of vis-
ual information in the brain’s cortex [30]. The phenomenon 
that the anesthesia state has a predominant influence on the 
responses of visual stimulus experiments was found. The 
average firing rate of most neurons in the V1 area increased 
significantly in the light anesthesia state. These results imply 
that the anesthetic is likely to impair the visual information 
response and impede proper information exchange between 
cortical areas. Therefore, this model may be of great help in 
the selection of recorded data in visual experiments. 

 The predictive model proposed in this paper can be im-
plemented more effectively due to the characteristics of LFP 
signals in time-frequency domain and special properties of 
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Fig. (5). Orientation Tuning Curve of channel6 under light anesthesia state.  
The blue solid curve represents orientation tuning computed as the average firing rate evoked by sinusoidal drifting grating with 12 different 
orientations respectively from actual response of neuron by using the reverse correlation method. The detailed approaches are delineated in 
reference [33]. Individual orientation-tuning curve was fit to a two-peak Gaussian distribution (red dashed line), described in the following 
equation  
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where 
maxR  represents the maximum response rate, 

1K  and 
2K are coefficients of responses,  X  represents the orientations used, 

pref repre-
sents the preferred orientation,   represents the SD, and baseline is the DC-offset of the Gaussian distribution. 
To make quantitative comparisons of the degree of orientation selectivity for a neuron, we used the orientation selectivity index (OSI) de-
fined as equation below 
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where   is stimulus orientation and ( )R  indicates the evoked peak response to each grating. A neuron that responds exclusively to a single 
orientation will have an OSI=1, whereas a neuron that responds equally to all orientations will have an OSI=0. 
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neurons in the primary visual cortex. BIS is a monitoring 
anesthesia depth technology based on EEG, and its frequency 
band is narrow and not sensitive to noxious stimuli. How-
ever, the high frequency (> 30 hz) components of LFP sig-
nals carry the finer information generally used to analyze 
anesthesia state. Two frequency domain parameters ( ratio 
and ratio values) used in BIS technology are retained in 
our model, and the LZC calculated from different frequency 
components of LFP can represent trends of anesthesia depth 
over time. Especially considering the properties of neurons 
in the primary visual cortex, the LZC of gamma frequency 
component should be significantly different in visual stimuli 
under the two different anesthesia states (light and deep). 
Therefore, we believe this model can improve the accuracy 
of prediction. 

 In this study, we only demonstrated the model’s validity 
for ketamine hydrochloride administered intravenously by 
implanted MEA,but have not analyzed and compared the 
predictive effects for various anesthetics. In the future, we 
will conduct research on the anesthesia predictive model for 
different anesthetics’ reaction, and then demonstrate the va-
lidity of the model for actual clinical impl 
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