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Abstract: During the past few decades, biomedical modeling techniques have been applied to improve performance of a 

wide variety of medical systems that require monitoring and control. Diabetes is one of the most important medical 

problems. This paper focuses on designing a state feedback controller with observer to improve the performance of the 

insulin control for type ‘I’ diabetic patients. The dynamic model of glucose levels in diabetic patients is a nonlinear 

model. The system is a typical fourth-order single-input-single-output state space model. Using a linear time invariant 

controller based on an operating condition is a common method to simplify control design. On the other hand, adaptive 

control can potentially improve system performance. But it increases control complexity and may create further stability 

issues. This paper investigates patient models and presents a simplified control scheme using observer-based feedback 

controllers. By comparing different control schemes, it shows that a properly designed state feedback controller with 

observer can eliminate the adaptation strategy that the Proportional-Integral-Derivative (PID) controllers need to improve 

the control performance. Control strategies are simulated and their performance is evaluated in MATLAB and Simulink. 
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1. INTRODUCTION 

 Insulin is a hormone that is necessary for converting the 
blood sugar, or glucose, into usable energy. The human body 
maintains an appropriate level of insulin. Diabetes is caused 
by lack of insulin in the body. There are two major types of 
diabetes, called type ‘I’ and type ‘II’ diabetes. Type ‘I’ 
diabetes are called Insulin Dependent Diabetes Mellitus 
(IDDM), or Juvenile Onset Diabetes Mellitus (JODM). Type 
‘II’ diabetes are known as Non-Insulin Dependent Diabetes 
Mellitus (NIDDM) or Adult-Onset Diabetes (AOD) [1-7]. 
The lifestyles of type ‘I’ diabetes are often severely affected 
by the Consequences of the disease. Because of the insulin 
producing B-cells of the pancreas are destroyed, patients 
typically regulate glucose manually. The patient is totally 
dependent on an external source of insulin to be infused at an 
appropriate rate to maintain blood glucose concentration. 
Mishandling this task, potentially lead to a number of serious 
health problems including heart and blood vessel disease, 
kidney disease, blindness. Deviations below the basal 
glucose levels (hypoglycemic deviations) are considerably 
more dangerous in the short term than positive 
(hyperglycemic) deviations, although both types of 
deviations are undesirable [8, 9]. Large efforts are 
undertaken in pharmacology and biomedical engineering to 
control glucose concentration by proper insulin dosing [10]. 

 The insulin infusion rate to a diabetic patient can be 
administrated based on the glucose (sugar) level inside the 
body. Over the years many mathematical models have been  
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developed to describe the dynamic behavior of human 
glucose-insulin systems. The most commonly used model is 
the minimal model introduced by Bergman [6, 11-16]. The 
minimal model consists of a set of three differential 
equations with unknown parameters. Since diabetic patients 
differ dramatically due to variations of their physiology and 
pathology characteristics, the parameters of the minimal 
model are significantly different among patients. Based on 
such models, a variety of control technologies have been 
applied to glucose/insulin control problems [17-20]. 
Therefore, the closed loop control techniques are developed 
to maintain physiological glucose level [10]. 

 This paper studies benefits of using simplified control 

strategies in improving performance of insulin control for 

type ‘I’ diabetic patients. In the previous paper, 

“Identification and Low-Complexity Regime-Switching 

Insulin Control of Type ‘I’ Diabetic Patients”, we studied 

adaptive Proportional-Integral-Derivative (PID) control 

strategies for type I diabetes. This paper investigates patient 

models and presents a simplified control scheme using state 

feedback controllers. The design of the state feedback 

controller is based on the pole placement method using the 

Ackermann’s Formula. By comparing the design of the state 

feedback controller to that of the PID controller in gain-

scheduled adaptation strategies, we show that the state 

feedback can improve the system performance and simplify 

the complexity of the control system. These findings lead to 

a control scheme that utilizes a non-adaptive observer-based 

state feedback controller. 

 Many methods and techniques have been investigated, 
tested, and studied for controlling the glucose level in type 
‘I’ diabetes patients. Research in this field has always been 
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model-based and has moved from the development of the 
structure of a model of glucose and insulin dynamics 
stepping towards model parameter estimation and model 
personalisation to each single patient’s requirements [21]. 
Fisher [18] used the glucose insulin minimal model to design 
a semi-closed loop insulin infusion algorithm based on three 
hourly plasma glucose sampling. The study was concentrated 
on the glucose level, and did not take in consideration some 
factors such as free plasma insulin concentration and the rate 
at which insulin was produced as the level of glucose rises. 
Furler [19] modified the glucose insulin minimal model by 
removing the insulin secretion and adding insulin antibodies 
to the model. The algorithm calculated the insulin infusion 
rate as a function of the measured plasma glucose 
concentration. The linear interpolation was used to find the 
insulin rate. The algorithm neglected some variations in 
insulin concentration and other model variables. Ibbini, 
Masadeh and Amer [20] tested the glucose minimal model to 
design a semi closed-loop optimal control system to control 
the glucose level in diabetes patients. 

2. MODEL STRUCTURES 

 The level of the glucose inside the human being body 
changes significantly in response to food intake and other 
physiological and environment conditions, it is necessary to 
derive mathematics models to capture such dynamics for 
control design [11-13, 22-24]. To simplify the model for 
control design, a common practice is to locally linearize the 
minimal model under a given operating condition. 

 The insulin enters or exits the interstitial insulin 
compartment at a rate that is proportional to the difference 
i(t)  ib of plasma insulin i(t) and the basal insulin level ib 
[25, 26]. If the level of the insulin in the plasma is below the 
insulin basal level, insulin exits the interstitial insulin 
compartment. When the level of insulin in the plasma is 
above the insulin basal level, insulin enters the interstitial 
insulin compartment. On the other hand, glucose enters or 
exits the plasma compartment at a rate that is proportional to 
the difference g(t)  gb of the plasma glucose level g(t) and 
the basal glucose level gb. When the level of glucose in the 
plasma is below the glucose basal level, the glucose exits the 
plasma compartment. When the level of glucose in the 
plasma is above the glucose basal level, glucose enters the 
glucose compartment. The normal range of blood glucose 
concentration should be maintained within narrow limits 
throughout the day: 70–140 mg/dl, lower in the morning and 
higher after the meals [27, 28]. 

 For most normal persons the glucose levels are between 
80 mg/dl and 100 mg/dl in a fasting state, which is before 
eating or drinking anything for at least 8 hours. Table 1 
shows the glucose levels for different people categories with 
the minimum and maximum value of the glucose level for 
each category [29]. After eating, the glucose level rises 
above the normal level and should fall back to the original 
starting point within 2 to 3 hours. If the glucose level does 
not fall down, the person is classified as Diabetic or at the 
early diabetes stage. However the glucose level should not 
fall below 60 mg/dl [30] as this is typically the symptom of 
hypoglycemia 

 The minimal model has been developed and tested on 
healthy subjects, whose insulin is released by pancreas 
depending on the actual blood glucose concentration [21]. 
The minimal model consists of two parts: the minimal model 
of glucose disappearance, (g and v), and the minimal model 
of insulin kinetics, (i) 
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where g(t) (mg/dl ) is the blood glucose level in plasma; i(t) 
( U/ml) is the insulin concentration level in plasma; v(t) 
(min

1
) is the variable which is proportional to the insulin in 

the remote compartment, gb (mg/dl) is the basal blood 
glucose level in plasma; ib ( U/ml) is the basal insulin level 
in plasma; t (min) is the time interval from the glucose 
injection. The initial conditions of the above differential 
equations are: g(0) = g0, v(0) = 0, i(0) = i0. 

 The model parameters carry some physiological 

meanings that can be summarized as follows. P1 (min
1
) 

describes the “glucose effectiveness” which represents the 

ability of blood glucose to enhance its own disposal at the 

basal insulin level. P2 (min
1
) describes the decreasing level 

of insulin action with time. P3 (min
2
( U/ml)

1
) describes 

the rate in which insulin action is increased as the level of 

insulin deviates from the corresponding baseline.  

(( U/ml)(mg/dl)
1
 min

1
) denotes the rate at which insulin is 

produced as the level of glucose rises above a “target 

glycerin” level. n (min
1
) represents fractional insulin 

clearance. h (mg/dl) is the pancreatic “target glycemia” level. 

g0 (mg/dl) is the theoretical glucose concentration in plasma 

extrapolated to the time of glucose injection t = 0, [11-13, 

31]. i0( U/ml) is the theoretical plasma insulin concentration 

at t = 0. U/ml is the conventional unit to measure the 

insulin level and has the following conversion: 1 micro-

unit/milliliter = 6 picomole/liter, (1 U/ml = 6 pmol/l), [32, 

33]. P1, P2, P3, n, , h, g0 and i0 are the model parameters. A 

fourth differential equation will be added to the set of the 

minimal model equations to represent a first-order pump 

dynamics 
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where w(t) is the infusion rate, u(t) is the input command, 
and a is the time constant of the pump. 

Table 1. Blood Glucose Levels Chart 

Fating State Postprandial Person’s 

Category 
Glucose 

Minimum 

Value 

(mg/dl) 

Glucose 

Maximum 

Value 

(mg/dl) 

2-3 Hours 

after Eating 

(mg/dl) 

Hypoglycemia - < 59 < 60 

Early hypoglycemia 60 79 60 - 70 

Normal 80 100 < 140 

Early diabetes 101 126 140-200 

Diabetic > 126 - > 200 
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 This above system is nonlinear due to the presence of the 
nonlinear term x1(t)* x2(t). The Jacobian Matrices (Jx and Ju) 
of the mathematical model at the equilibrium point (x0, u0) 
can be derived as 
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 The following are the parameters values of a diabetic 
patient: P1 = 0, P2 = 0.81/100, P3 = 4.01/1000000, i0 = 192, 
g0 = 337,  = 2.4/1000, h = 93, n = 0.23, a = 2, gb = 99, ib = 
8 [11-13]. These values are substituted in the patient 
dynamic system and the simulation was run. The result of 
the simulation is shown in Fig. (1). By examining Fig. (1), it 
can be clearly seen that the glucose level does not come 
down to the basal level after injecting an amount of 337 
mg/dl of glucose inside a diabetic patient. The graph shows 
that the level of the glucose inside a diabetic patient 
decreases for almost the first 100 minutes and starts 

increasing afterward and reaches the value of almost 310 
mg/dl after 3 hours from the time the glucose was injected 
[34]. The goal is to bring down the value of the glucose 
inside a diabetic patient to the normal level. That goal can be 
achieved by designing a feedback controller. The controller 
is to regulate the infusion rate and inject the required amount 
of the insulin inside the diabetic patient. In turn the insulin 
will work inside the patient to bring down the glucose to the 
normal level or at least to its neighborhood. 

3. REVIEW ON GAIN-SCHEDULED PID 
CONTROLLERS 

 The general form of the state space is defined in the 
following equation 

   

x =  Ax +  Bu

y =  Cx +  Du
 (5) 

where 
 x: is the state vector 

 y: is the output vector 

 u: is the control vector 

 A: is the state matrix 

 B: is the control matrix 

 C: is the output matrix 

 D: is the direct transmission matrix 

 The proposed mathematical model (3), can be linearized 
at the equilibrium point (x0, u0) and then the linearized 
system can be written in the state space form as 
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 The data of a diabetic person shown in section 2 was 
used and the equilibrium point (x0, u0) was calculated as time 
varies from t = 1 min to t = 182 min. The controllability and 
observability test was performed and the system was found 
to be controllable and observable 

3.1. Design of PID Regime-Switching Controllers for 
Diabetic Patient 

 The patient dynamic system was expressed in the state 
space representation as in (6). For an overshoot less than 
10%, a damping ratio must be greater than 0.59. A settling 
time less than 60 minutes implies that 

 n
 must be greater 

than 0.067 [34]. When simulating the output of the system, 
the glucose level, as time t goes from 0 to 182 minutes, it 
was noted from the graphs that the output of the system can 
be grouped into eight groups. These groups are at the 
following operating points: t = 1, 20, 40, 60, 90, 120, 150 
and 182 minutes. The design of the PID controller was done 
by applying the root locus method at these operating points. 
The parameters Kp , Ki , and Kd of the PID at each operating 
points are shown in Table 2 [34]. 

 

Fig. (1). Simulated glucose level g(t) for diabetic patient. 
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 Under the individual PID controllers, the output g(t), the 

glucose level, did not meet the design specification, and the 

glucose level is not near the neighborhood of the glucose 

basal level. The overshoot of the system is too high and 

beyond the acceptable level. Also the settling time was not 

even close to where it should be as per the design 

requirement. The steady state error is not satisfactory. 

Consequently, a new control-switching scheme was 

introduced that adapts controllers to meet design 

specifications. The wiring diagram of the regime-switching 

control scheme is shown in Fig. (2) [34]. The regime -

switching control scheme diagram was simulated with all 

PID controllers executed (connected to the circuit). The 

glucose level did not meet the design specification and went 

below the minimum of the glucose level [34]. In this case the 

person will be classified as a patient with hypoglycemia. 

When the control scheme was simulated with only PID 

controllers
 
g

C

1
,  g

C

20
,  g

C

40
 and  g

C

60 are executed, the output g(t) 

of the system reaches the glucose basal level (99 mg/dl) 

within 40 minutes, and it stays in that neighborhood as 

shown in Fig. (3) [34]. 

 Based on the simulation results, although adaptive 
control can potentially improve control performance, it is 
sometimes unnecessary, or even harmful when switching is 
conducted overly frequently. In comparison to individual 
controllers, the regime-switching control scheme achieves 
design specification while all individual controllers fail to 
deliver the required performance [34]. As a result, it is 
desirable to investigate simpler and more robust control 
strategies. 

4. OBSERVER-BASED STATE FEEDBACK DESIGN  

 The state feedback design can be designed on the basis of 

the pole placement method. In the pole placement method 

the closed loop poles will be placed at desired locations [35]. 

While this is similar to root-locus method used in the PID 

 

Fig. (2). Regime-switching control scheme wiring diagram using PID controllers. 

 

Fig. (3). Plot of glucose level g(t) when only PID Controllers
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design, the main difference is that in the root-locus method 

only the dominant closed loop poles will be placed at the 

desired locations, while in the pole-placement method all the 

closed loop poles will be placed at desired locations. 

4.1. Design of State Feedback Controllers by Pole 
Placement for Linear Systems 

 When designing a controller by the pole placement 
method, the designer must define the specifications that need 
to be achieved by the controller. The objective is to design a 
state feedback controller so that the closed-loop system has 
the following specifications: a small steady-state error under 
a step input; less than 10% overshoot; a settling time less 
than 60 minutes. We shall choose the control signal to be 

u = – Kx (7)  

 This means that the control signal u is determined by an 
instantaneous state feedback. Such a scheme is well known 
as state feedback. The 1  n matrix K is the state feedback 
gain matrix. Substituting equation (7) into equation (5), the 
state equation becomes 

   
x =  A –  BK( ) x  (8) 

 The stability and the transient response characteristics are 
determined by the eigenvalues of matrix A – BK. The 
eigenvalues of matrix A – BK are called the regular poles. If 
these poles are placed in the left half s plane, then x(t) 
approaches zero as t approaches infinity. The following 
equation is called Ackermann’s Formula used to determine 
the value of the matrix K [35], see the appendix for 
derivation: 
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 The desired poles of the controller can be determined 
based on the damping ratio and natural frequency n . The 
damping ratio and the natural frequency are related to the 
maximum overshoot, Mp, and the settling time, ts, with the 
following relations 
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Equations (10) can be rearranged to obtain the value of  
and the natural frequency n  
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The dominant poles are calculated by 

  
P

1,2
=  n ± j n 1

2
 (12) 

And the remaining two poles are chosen as 

  
P

3,4
= 2P

1,2
 (13) 

 By using the data given in section 2 for a diabetic patient, 
maximum overshoot at 10%, and settling time at 60 minutes, 
the damping ratio and the natural frequency n  are 
calculated by using equation (11) as 

  
= 0.5912,  and 

n
= 0.1128  

 The values of the desired poles can be calculated using 
equations (12) and (13) 

  

P
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P
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P
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 Using Ackermann’s Formula, the state feedback 
controllers can be designed based on the models at different 
operating points. The following are the models at t = 1, 20, 
40, 60, 90, 120, 150 and 182 minutes, and the corresponding 
feedback controllers. Since B and C do not change with time, 
they are fixed in all cases as: 

 

 B =  

0

0

0

0.5

 and  C  =  1      0        0       0
 

 The following are the matrix A and corresponding matrix 
K at certain operating points: 

t = 1 minute: 

  

 A
1
=  

0             859.6667         0                     0

0             0.0081        0.00000401         0

0.0024           0            0.23                   1

0                    0                  0               0.5

K
1
= 0.4    4702.2    0.1   0.7

 

t = 20 minutes: 

 

 A
20

=  

0            131.33             0                       0

0            0.0081        0.000004010          0

0.048            0            0.23                     1

0                  0                   0                0.5

K
20

= 2.5    4693.8    0.1   0.7

 

t = 40 minutes: 

  

 A
40
=  

0             112.17             0                          0

0             0.0081        0.00000401              0

0.096             0            0.23                        1

0                    0                   0                   0.5

K
40
= 2.9    4684.8    0.1   0.7
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Fig. (4). Response curves to initial conditions at operating points t = 1, 20, 90 and 182 minutes. 
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 As mentioned above, the glucose, g(t), should approach 

zero as the time t approaches infinity. After plotting the 

responses to initial condition at time t = 1, 20, 40, 60, 90, 

120, 150 and 182 minutes, it was noted that the graphs are 

very close to each others and for that reason only four graphs 

are shown in Fig. (4).  
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4.2. Design of State Observers for Linear System 

 When designing a state feedback controller by the pole 
placement method, it is assumed that all the state variables 
are available for feedback. In practice the state variables may 
not be available for feedback. Then we need to estimate the 
unavailable state variables. The process of estimating the 
unmeasured state variables is commonly known as 
observation. The device that observes the estimation of the 
unmeasured state variables is called a state observer. The 
notation. The notation   x (t) is used to denote the observed 
state vector. The mathematical model of the observer is 
basically the same as the plant, except that we include the 
estimation error to compensate for inaccuracies in the initial 
state errors. The mathematical model of the observer is 
defined as 

  
x
.

=  Ax + Bu + K
e

y –  Cx( ) (14) 

 –u Kx=  (15) 

where   x is the estimated state, C  x  is the estimated output 
and Ke is the observer gain matrix.  

 Substituting equation (15) into equation (14) gives 

  
x
.

=  A –  K
e
C  –  BK( ) x + K

e
y  (16) 

 The observed state variable   x (t) can be used to compute 
the feedback to the system. Fig. (5) shows the block diagram 
of the observer-based state feedback control system. The 
design process will be done in two phases. The first phase is 
to calculate the value of the feedback gain matrix K, and the 
second phase is to determine the observer gain matrix Ke. 
The value of the matrix Ke is calculated by Ackermann’s 
Formula for observers as 

  

K
e
= A( )

C

CA

CA
2

CA
3

1

0

0

0

1

 (17) 

where the matrix  

  
K

e
= K

e1
 K

e2
 K

e3
 K

e4

T
 

 Now we need to choose the observer gain Ke. Since we 
want the dynamics of the observer to be much faster than the 
system itself, we need to place the poles at least five times 
farther to the left than the dominant poles of the system. The 
values of the desired poles of the observer are selected as 

 

P
o1
= 0.3333+ j0.4548

P
o2
= 0.3333 j0.4548

P
o3
= 0.6667 + j0.9096

P
o4
= 0.6667 j0.9096

 

 The values of matrices K and Ke at certain operating 
points are calculated by Ackermann’s method. The values of 
matrix K were found in the previous section and the values 
of matrix Ke are shown below 

t = 1 minute:          t = 20 minutes: 

 

 K
e1
=

1.2620

0.0017

22.4977

58.8582

 

 

 K
e20

=

1.2620

0.0109

147.2340

385.2770

 

t = 40 minutes:          t = 60 minutes: 

 

 K
e40

=

1.2620

0.0128

172.3436

451.0869
 

 

 

 K
e60
=

1.2620

0.0135

182.7124

478.3364

 

t = 90 minutes:          t = 120 minutes: 

  

 K
e90
=

1.2620

0.0141

190.3134

498.4084

   

 K
e120

=

1.2620

0.0144

194.3246

509.0897

 

 
Fig. (5). Observer-based state feedback control wiring diagram. 
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t = 150 minutes:           t = 182 minutes: 

 

K
e150

=

1.2620

0.0146

196.7916

515.7316

 

 

K
e182

=

1.2620

0.0147

198.5401

520.5064

 

4.3. Individual Observer-Based State Feedback 
Controllers  

 Non-adaptive observer-based state feedback controllers 
use a fixed controller for the entire control period and rely on 
its robustness to maintain control performance. For each 
individual observer-based state feedback controller (with its 
gain matrices K and Ke found in the previous sections for t = 
1, 20, 40, 60, 90, 120, 150 and 182 min), the simulation was 
performed and the output of the system was plotted. Based 
on the simulation results, it can be seen that under the 
individual observer state feedback controllers, the output 
g(t), the glucose level, reaches the basal level within 60 
minutes and stays at that level. By carefully analyzing the 
plots of the output, it is clear that the optimal graph is when 
the observer-based state feedback controller at time t = 20 
minutes is used. It was noted that the graphs are very close to 
each others and for that reason only four graphs are shown in 
Fig. (6). 

4.4. Observer-Based State Feedback Controller for the 
Nonlinear System 

 Applying the design for the linear system that was 
calculated in section 4.2 to the nonlinear system at operating 
point t = 20 minutes. The simulation diagram of the 
nonlinear system that defines the dynamics of the diabetic 

patient with the observer-based state feedback is shown in 
Fig. (7). The box labeled “subsystem (patient) 1” in Fig. (7) 
contains the nonlinear system of the diabetic patient. The 
simulation is performed and the glucose level g(t) is plotted 
and shown in Fig. (8). The glucose level for the nonlinear 
system has the same high performance as that of the linear 
system. 

 To verify of the above design, the same control design 

was applied to the nonlinear system but at different 

maximum overshoots 1%, 2%, 3%, 5%, and 8%. The poles 

of the controllers and observers at operating points t = 1,  

20, 40, 60, 90, 120, 150 and 182 minutes were calculated for  

 

Fig. (7). Observer-based state feedback control wiring diagram for 

nonlinear system. 

Fig. (6). Observer-based state feedback controller output, glucose level g(t), at operating points t = 1, 20, 90 and 182 minutes. 
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Fig. (8). Observer-based state feedback control output, glucose level g(t), for nonlinear system at t =20 minutes. 

 

Fig. (9). Observer-based state feedback control output, glucose level g(t), for nonlinear system at t =20 minutes for various maximum 

overshoots. 
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each maximum overshoot, and the glucose levels were 

plotted. The graphs show that the best result is when using 

the observer-based state feedback controller at operating 

point t = 20 minutes, which was the same result that was 

concluded in section 4.3. Fig. (9) shows the graphs of the 

glucose level, g(t), and the steady state zone at operating 

point t = 20 minutes at various maximum overshoot values. 

The steady state zone is defined to be within 5% of the basal 

level, (94 mg/dl to 104 mg/dl). The graphs were compared to 

each other to determine the time it takes the glucose level, 

g(t), to enter the steady state zone. The comparison results 

are listed in Table 3. 

 By comparing the result of Table 3 and the graphs of Fig. 

(9), it is obvious to conclude when the maximum overshoot 

is small, the settling time, (the time it takes the glucose level 

to enter the steady state zone and to stay inside that zone), is 

long. But when the maximum overshoot is large, the settling 

time is short.  

CONCLUSIONS 

 This study shows that typical PID controllers may not be 

sufficient to meet the design specification of the glucose 

level control problems. This is mainly due to the nonlinear 

nature of patient dynamic models and limited robustness of 

the PID controllers. An adaptive control that switches 

controllers based on operating conditions can potential 

enhance control performance. However, the switching 

control scheme must be carefully designed to ensure that the 

control specifications are met. Our results show that when 

the switching scheme is limited to the first four PID 

controllers, the performance is in fact enhanced [34]. 

 On the other hand, in comparison to individual observer-
based state feedback controllers, the glucose level reaches 
the basal level and the design specifications were met by 
using only one controller at operating point t = 20 minutes, 
(see Fig. 8). In comparing with the PID controller, the PID 
control-switching scheme achieves the design specifications 
by using the first four PID controllers at operating point t = 
1, 20, 40 and 60 minutes, (see Fig. 3). 

 Also this paper investigates the output of the observer-

based state feedback controller with various overshoots and 

compares the result. As it can be seen from Table 3, the 

smaller the overshoot the longer it takes for the glucose level 

to reach the steady state. From the above study we can 

conclude that the observer-based state feedback controller 

can give a better performance than the adaptive PID 

controller. From the control point of view and the 

complexity of the design, the observer-based state feedback 

controller is simpler and the design is less complex, 

compared with the PID regime-switching controllers. It was 

noted the graphs of the output of the PID regime-witching 

controllers, (see Fig. 3), and the observer-based state 

feedback, (see Fig. 8), give a similar high performance and 

meet the design specification. However, the observer-based 

state feedback reduces the complexity of the control circuit. 

The control components such as the “switching case”, the “if 

action case system”, the “8-intput-1-output merge” block, 

and the eight manual switches are eliminated when the 

observer-based state feedback is used and that eliminates the 

switching strategy that is required in the PID design. Also 

the PID design requires four controllers while the observer-

based state feedback design requires only one controller 
which reduces the cost to build up the control circuit. 

Table 2. PID Controllers Parameters at Different Operating Points 

Time Kp Ki Kd 

1 0.00444 2.0094x10-4 5.59 

20 0.21600 0.0031 28.40 

40 0.23740 0.0061 32.70 

60 0.24830 0.0095 35.90 

90 0.23310 0.0138 36.40 

120 0.22340 0.0187 37.90 

150 0.20320 0.0229 37.70 

182 0.1870 0.0281 38.50 

Table 3. Glucose Level Steady State Zone Settling Times 

Percentage 

Maximum 

Overshoot 

Time to Enter 

Steady State Zone 

(min) 

Time to Reach 

Steady State 

(min)) 

1 95 110 

2 82 100 

3 75 80 

5 61 72 

8 49 55 

10 44 47 
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APPENDIX 

Ackermann’s Formula Derivation 

Let the desired closed loop poles be:  

  
s=μ

1
,  s=μ

2
,  s=μ

3
,  and  s=μ

4
. 

The desired characteristic equation is 

  
SI A+ BK = s μ1( ) s μ2( ) s μ3( ) s μ4( ) =  s

4 +
1
s

3 +
2
s

2 +
3
s+

4
= 0

(I) 

Let   A= A BKand substituting it in equation (I) 

  
sI A = s

4
+

1
s

3
+

2
s

2
+

3
s+

4
= 0 (II) 

 The Cayley-Hamilton theorem states that A  satisfies its 
characteristic equation as 

  
A( ) = A

4 +
1
A

3 +
2
A

2 +
3
A+

4
I = 0 (III)

 

 

 Recall the following matrix identities: 

  

I =  I

A =  A BK

A
2 = A BK( )

2

=  A
2

ABK BKA

A
3 = A BK( )

3

=  A
3

A
2
BK ABKA BKA

2

A
4
 = A BK( )

4

= A
4

A
3
BK A

2
BK ABKA BKA

2
BKA

3

(IV) 

 Now substituting equation (IV) in equation (III) 

  

A( ) = A
4

A
3
BK A

2
BK ABKA BKA

2
BKA

3 +

           
1

A
3

A
2
BK ABKA BKA

2( ) +
           

2
A

2
ABK BKA( ) + 3

A BK( ) + 4
I

         =A
4

A
3
BK A

2
BK ABKA BKA

2
BKA

3 +

           
1
A

3

1
A

2
BK

1
ABKA

1
BKA

2

           
2
A

2

2
ABK

2
BKA  +

3
A

3
BK +

4
I

 (V) 

 The minimal polynomial of the matrix A is defined in the 
equation below 

  
A( )  =  A

4 +
1
A

3 +
2
A

2 +
3
A+

4
I  (VI) 

 After substituting equation (VI) in equation (V) and 
rearranging its terms as 

  

A( )  =  A( ) A
3
BK A

2
BK ABKA BKA

2

           BKA
3

1
A

2
BK

1
ABKA

1
BKA

2

2
ABK

2
BKA

3
BK

(VII) 

Since 
  

A( ) = 0, equation (VII) can be written as 

  

A( ) = B KA
3 + KA

2 +
1
KA

2 +
2
KA+

3
K( ) +

            AB
1
KA+

2
K + KA( ) + A

2
B K +

1
K( ) + A

3
B K( )

 (VIII) 

Equation (VIII) can be rearranged as 

  

A( ) = B  AB  A
2
B  A

3
B

KA
3 + KA

2 +
1
KA

2 +
2
KA+

3
K

1
KA+

2
K + KA

K +
1
K

K

(IX) 

 Multiplying both sides of equation (IX) 

by

  

B  AB  A
2
B  A

3
B

1

 
yields 

   

B  AB  A
2
B  A

3
B

1

A( ) =

KA
3 + KA

2 +
1
KA

2 +
2
KA+

3
K

1
KA+

2
K + KA

K +
1
K

K

(X) 

 After multiply both sides of equation (X) by
 
0  0  0  1 , 

we obtain 

  

0  0  0 1 B  AB  A
2
B  A

3
B

1

A( ) = 0  0  0 1

KA
3 + KA

2 +
1
KA

2 +
2
KA+

3
K

1
KA+

2
K + KA

K +
1
K

K

(XI) 

Equation (XI) is the can be written as 

  

K = 0  0  0 1 B  AB  A
2
B  A

3
B

1

A( ) (XII) 

where the matrix 
  
K = K

1
 K

2
 K

3
 K

4
 

Equation (XII) called Ackermann’s Formula. 
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