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Abstract: Bodyweight (BW) is an essential outcome measure for weight management and is also a major predictor in the 

estimation of daily energy expenditure (EE). Many individuals, particularly those who are overweight, tend to underreport 

their BW, posing a challenge for monitors that track physical activity and estimate EE. The ability to automatically 

estimate BW can potentially increase the practicality and accuracy of these monitoring systems. This paper investigates 

the feasibility of automatically estimating BW and using this BW to estimate energy expenditure with a footwear-based, 

multisensor activity monitor. The SmartShoe device uses small pressure sensors embedded in key weight support 

locations of the insole and a heel-mounted 3D accelerometer. Bodyweight estimates for 9 subjects are computed from 

pressure sensor measurements when an automatic classification algorithm recognizes a standing posture. We compared 

the accuracy of EE prediction using estimated BW compared to that of using the measured BW. The results show that 

point pressure measurement is capable of providing rough estimates of body weight (root-mean squared error of 10.52 kg) 

which in turn provide a sufficient replacement of manually-entered bodyweight for the purpose of EE prediction (root-

mean squared error of 0.7456 METs vs. 0.6972 METs). Advances in the pressure sensor technology should enable better 

accuracy of body weight estimation and further improvement in accuracy of EE prediction using automatic BW estimates. 
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1. INTRODUCTION 

 Accurate prediction of bodyweight (BW) and daily 
energy expenditure (EE) is important for researchers, 
clinicians and individuals interested in human performance 
and health, particularly weight management. Weight 
management programs designed to prevent and treat obesity 
recommend regular monitoring of BW, restricted energy 
intake via diet and increased energy expenditure via lifestyle 
alterations that increase physical activity levels [1]. 
Individuals who are dieting or have recently undergone 
bariatric surgery may have significant weekly changes in 
BW [2, 3]. In addition, children/adolescents who experience 
growth spurts [4] and pregnant women [5] may also 
experience significant weekly BW changes. Individuals can 
monitor BW with an electronic scale. However, a scale may 
not be well suited for repeated measurement of BW 
throughout the day (if they are not available at home and 
work), which has been shown to help prevent BW regain in 
obese adults [6]. 

 The ability to measure and use BW as an input to energy 
expenditure prediction equations may improve the accuracy 
of a weight management device. Bodyweight is one of the 
major factors contributing to person’s daily energy  
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expenditure [7-9]. Well-known Harris-Benedict equations 

[10] for basal energy expenditure (BEE) estimation define a 

linear correspondence between BW and BEE Second, BW 

affects physical activity energy expenditure (PAEE), which 

is equal to total energy expenditure (TEE) minus Resting 

Energy Expenditure (REE) [11].  For weight bearing 

activities it is generally accepted that there is a linear 

relationship between BW and PAEE [7, 8].  However, during 

non-weight bearing activities a body mass scaling exponent 

of <1.0 (0.5-0.8) more accurately estimates PAEE across 

individuals of varying body size. As a result, many models 

for estimation of total EE that use accelerometer, heart rate 

and other sensors as well as anthropometric characteristics 

[12-15] use BW to predict REE and physical activity EE. In 

these models it is assumed that BW is constant. As noted 

above, a person’s change in BW can be quite significant: 

with reports of up to 9 kg in a single week [16]. Weekly BW 

fluctuations can reflect changes in the amount of lean (e.g. 

muscle) and adipose tissue in the body and affect BEE as 

well as PAEE. These weekly BW changes may negatively 

affect the accuracy of within-person EE prediction if using a 

constant BW value.  

 Users of a device/system that tracks BW and estimates 

EE are unlikely to want/need to enter their current, self-

reported BW on a regular basis. In addition, the reliability of 

self-reported BW is generally poor. In particular, people tend 

to under-report their BW, women to a greater magnitude 
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than men and obese more than non-obese [17-20]. Thus, the 

incorporation of automatic, objective BW estimation into a 

wearable system for daily BW and EE monitoring could be 

very important.  

 The purpose of this study was two-fold: first, to develop 
a model for BW estimation by using pressure sensors 
embedded in the SmartShoe device; second, to assess the 
effect of replacing actual BW by the estimated BW on the 
accuracy of energy expenditure, i.e. to investigate the need 
of using actual BW measurements versus indirect BW 
estimations in the energy expenditure prediction using the 
SmartShoe device.  

 This paper is organized as follows. In section 2 the study 
protocol and data used in the analysis are described; the 
model for BW estimation using data from the SmartShoe 
device is explained; and the model for EE prediction using 
estimated BWs is described. Section 3 provides the results; 
section 4 contains the discussion; conclusions are given in 
section 5.  

2. METHODS 

2.1. Subjects  

 Nine adults (three male, six female) participated in the 
study (Table 1). All subjects were asked to perform a variety 
of activities while wearing shoes with sensors and a portable 
indirect calorimetry system. All subjects were healthy and 
informed written consent was obtained from each 
participant. The research protocol was approved by the 
Institutional Review Board (IRB) at Clarkson University, 
Potsdam, NY where the study was conducted. 

2.2. Study Design 

 Each subject was asked to perform a variety of activities 
while wearing a portable indirect calorimetry system 

(Oxycon Mobile, Yorba Linde, CA; weight of 950 g) and the 
appropriately sized SmartShoe. There were 13 different 
activities from four groups (Sit, Stand, Walk/Jog and Cycle) 
that represent various intensities of weight-bearing and non-
weight bearing activities (Table 2). Each activity was 
performed for six minutes and subjects were allowed to rest 
between activities. 

 During the fidgeting trials, subjects were allowed to 
make small, normal leg movements (e.g., crossing legs, 
shifting weight or turning around). Although we did not 
control the types of fidgeting movements, all participants 
were given the same instructions. As a result, fidgeting 
movements were similar across individuals. All 
walking/jogging trials were completed on a treadmill. 

 The actual BW of each subject was taken at the 
beginning of the study (prior to being equipped with Oxycon 
Mobile system) by an electronic floor scale (Taylor 5571) 
accurate up to 150kg with resolution of 0.2kg. The subjects 
were considered to be BW stable for the duration of 2.5 hour 
experiment. 

2.3. EE Measurement  

 To determine EE during each trial, the rates of oxygen 
consumption (VO2) and carbon dioxide production (VCO2) 
were measured using a portable open circuit respirometry 
system (Oxycon Mobile, Viasys, Yorba Linda, CA, USA) 
that was calibrated with known gas concentrations and 
volumes. For each trial, subjects were allowed four minutes 
to reach steady state (no significant increase in VO2 during 
the final two minutes and a respiratory exchange ratio (RER) 
<1.0). The average VO2 and VCO2 (ml/sec) were then 
calculated during minutes 4-6 of each trial. Gross metabolic 
rate (W/kg) from VO2 and VCO2 was calculated using a 
standard equation [21]. Energy expenditure was then 
computed from VO2 and RER. 

2.4. Movement and foot Pressure Measurement 

 SmartShoe is a wearable sensor system embedded into 
both shoes (Fig. 1). Each shoe incorporated five pressure-
sensitive resistors (0.5” FSR, Interlink Electronics, 
Camarillo, CA, USA) embedded in a flexible insole and 
positioned under the critical points of contact: heel, 1

st
, 3

rd
 

and 5
th

 metatarsal heads and the great toe (hallux) – total of 
10 sensors from the two shoes. In addition to pressure 
sensors, a 3-dimensional ±3g MEMS accelerometer 
(ADXL335, Analog Devices, Norwood, MA, USA) was 
attached to the heel of each shoe. All sensors were sampled 
at 400Hz, averaged to effective rate of 25Hz and sent to the 

Table I. Anthropometric Characteristics of Subjects (N=9) 

Variable Mean ± std Range 

Weight, kg 

Height, in. 

BMI 

Age 

Shoe size 

70.5 ± 15.8 

66.1 ± 3.7 

25.2 ± 6.5 

23.7 ± 4.3 

8.7 ± 1.3 

55-100.9 

61-71 

18.7-39.4 

18-31 

7-10.5 

Table 2. Four Groups of Activities Performed by Subjects 

Activity Group Activities within Group 

Sit Sit motionless 

Sit fidgeting 

Stand Stand motionless 

Stand fidgeting 

Walk/Jog Walk 1.5 mph 

Walk 2.5 mph 
Walk 3.5 mph 

Jog 4.5 mph 
Walk downhill 

Walk uphill 
Walk carrying 10% body weight 

Cycle Cycling 50 rpm 

Cycling 75 rpm 

 

Fig. (1). SmartShoe device: (a) Overall view of the shoe device 

with attached accelerometer, battery and power switch on the back; 

(b) Pressure-sensitive insole with 5 pressure sensors: heel (1), 3rd 

metatarsal head (2), 1st metatarsal head (3), 5th metatarsal head (4), 

hallux (5).  
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base station via a Bluetooth link implemented by using a 
Serial Port Profile communication module (RN-41, Roving 
Networks, Los Gatos, CA, USA). A detailed description of 
the SmartShoe hardware can be found in [22]. 

2. 5. Models 

 The outline of the method for energy expenditure 
prediction using estimated BW is shown in Fig. (2). The 
method for EE prediction using estimated BW relies on two 
previously developed algorithms: a model for 
posture/activity recognition [22] and model for EE 
prediction using measured BW and height [23]. The 
proposed methodology estimated BW from pressure signals 
during standing episodes and uses estimated BW for EE 
prediction. 

 Specifically, each 2 second segment of sensor data is 
classified as belonging to one of the four activity classes: 
“Sit”, “Stand”, “Walk/Jog” or “Cycle” [22]. Here walking 
under various conditions and jogging was considered as a 
single activity because it is sufficient to know that the 
subject is performing ambulation. Segments classified as 
“Stand” are used for BW estimation. The estimated BW 
together with the sensor signals recorded over 1 minute 
intervals are used in a branch model for EE prediction. 
Branch selection is performed by the majority vote of 
activity classification results over each 1 minute segment.  

2.5.1. Model for BW Estimation 

 BW estimation model relies on analysis of pressure 
measurements during periods of standing with minimal 
motion (“quiet standing”). For each subject, the data from 
the entire study (about 2.5 hours) was processed with a 
posture and activity recognition algorithm. For each 2s 
segment classified as “Stand” the average (from left and 
right shoe sensors) coefficients of variation (cv) for each 
sensor (including 3 accelerometer and 5 pressure sensors) 
were computed. Segments with cv below the experimentally 
determined thresholds (TP for pressure and TACC for 
acceleration) were considered corresponding to periods of 
quiet standing. To compute features for BW estimation, the 
mean pressure values (over each 2 second interval) were 
computed, after that mean metrics from left and right shoe 

for the same sensor location were combined as a simple 
average, resulting in total of 5 metrics (one for each pressure 
sensor). The driving hypothesis was that mean amount of 
pressure applied to a sensor under key support points is 
expected be proportional to the BW during periods of quiet 
standing. The most significant features were chosen by a 
forward selection procedure. In the forward selection we 
used a goodness-of-fit (adjusted coefficient of determination, 
R

2
adj) and prediction measures (root-mean squared error, 

RMSE) using known BW as a criterion.  

The BW estimation model was constructed and validated 
using leave-one-out cross-validation for “Stand motionless” 
and “Stand fidgeting” postures. Periods of quiet standing 
during these postures were automatically detected as 
described above. The BW estimation model was trained on 8 
out of 9 subjects and applied to the left-out subject to obtain 
BW predictions for that subject. The final value for 
estimated BW (eWeight) for each subject was computed by 
averaging 30 randomly selected BW predictions. Multiple 
rounds of cross-validation were performed using different 
partitions of the subject dataset each having a unique 
combination of 8 subjects chosen for training and 1 subject 
chosen for validation. 

2.5.2. Energy Expenditure Model Using Estimated BW 

 A previously reported model for estimation of EE [23] 
using the SmartShoe device was used without modification. 
The regression equations can be found in [23]. For prediction 
of EE measured Weight and log(BMI) were replaced by 
eWeight and log(eWeight/Height

2
), respectively. Cross-

validation was used to predict each excluded subject’s EE in 
kcal/min and METs (metabolic equivalents) with the 
conversion from kcal/min to METs performed by 
representing the energy expenditure during an activity as a 
multiple of resting energy expenditure. Energy expenditure 
during quiet sitting was used as an estimate of resting 
metabolic rate. 

2.6. Statistics 

 The following performance assessment measures were 
computed for each prediction model (BW and EE): 

 RMSE, the root mean squared error of prediction. This 

error is computed as the square root of the average squared 

difference between value predicted by model and the 

measured value V. 

• Bias, the mean difference between predicted and 
measured value V: bias = mean(predV - V).  

• Interval of agreement for prediction of energy 
expenditure in METs, calculated as given in [20]: 
(bias ± 2·SD(bias)). 

 Bland-Altman plot analysis [24] was conducted to reveal 

any systematic pattern of the error (calculated as the 

difference between predicted and measured values) across 

the range of measurements and to assess the bias and interval 

of agreement for prediction. 

 Pearson correlation coefficient and concordance 

coefficient are also computed between predicted and 

measured values to add to the assessment of the accuracy of 

prediction.  

 

Fig. (2). Outline of the method for energy expenditure prediction 

with estimated weights using Smart Shoe device. 
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3. RESULTS 

3.1. Bodyweight Estimation  

 Out of the total of 3207 two-second segments classified 
as standing (with 100% accuracy) from 9 subjects, 1701 
were selected as low movement segments using the 
following experimentally determined thresholds: TACC=0.005 
and TP=0.01. This selection resulted in 119 to 257 segments 
of quiet standing per subject, which were then used in BW 
estimation model.  

 Analysis of significance of the pressure sensors data has 

shown that sensors at the heel and 1
st
 metatarsal head have 

the most significant predictive power (R
2
 = 0.39 and  

R
2
 = 0.37 respectively). Forward selection of features 

computed from pressure sensors resulted in the following 

model: BW,kg = -11.085 + 0.027·Pressure.heel.mean+ 0.013· 

Pressure. 1
st
.meta.mean. The equation provides coefficients 

averaged from fitting 9 models (one for each subject: model 

trained on 8 subjects was used in prediction of BW for the 

remaining subject). The model showed a relatively good 

linear fit, as indicated by the adjusted coefficient of 

determination, R
2
adj = 0.66. 

Prediction performance of BW estimation was evaluated by 
computing eWeight by averaging 30 randomly selected BW 
predictions. RMSE values varied slightly depending on a 
sample but were very consistent with an average value of 
10.52 kg and very small standard deviation of 0.09 kg. 
Pearson correlation coefficient of actual and predicted 
eWeight was 0.71 and coefficient of concordance of the two 
measures was 0.65. Bland-Altman plot (Fig. 3) shows that 
there is a tendency to underestimate BW in the upper range 
of values as indicated by the increasing negative prediction 
errors. This fact is also demonstrated by the clear downward 
linear trend for both predictions (R

2
 for the fitted line is 

0.44).  

3.2. Energy Expenditure Prediction using Estimated BW 

 The predictive performance of model with estimated 
BWs (Branched model with ACCelerometer and Pressure 
Sensors using estimated Weight, BACC-PSeWeight) was 
compared to that of our original Branched model with 
ACCelerometer and Pressure Sensors (BACC-PS) [23] that 
uses actual BWs. The results (Table 3) indicate that although 
BACC-PSeWeight model prediction is less accurate than that of 
the BACC-PS model, the difference is not very significant.  

 

Fig. (3). Bland-Altman plot for eWeight prediction with 95% limits of agreement (dashed).  

Table 3. Energy Expenditure Prediction Models 

Model Branch Sample Size RMSE, METs 95% CI for RMSE Bias,  METs 95% int. of Agreement 

Sit 17 0.2847 (0.15, 0.42) 0.096 (-0.46, 0.65) 

Stand 18 0.3614 (0.24, 0.47) 0.1089 (-0.60, 0.82) 

Walk/Jog 54 0.8093 (0.59, 1.03) 0.0030 (-1.63, 1.64) 

Cycle 18 0.8192 (0.61, 1.00) 0.2273 (-1.39, 1.85) 

BACC-PS 

[23] 

Ave. 112 0.6972 (0.57, 0.82) 0.0702 (-1.32, 1.46) 

Sit 17 0.3028 (0.18, 0.43) 0.1243 (-0.44, 0.69) 

Stand 18 0.3938 (0.27, 0.50) 0.1343 (-0.63, 0.90) 

Walk/Jog 59 0.8766 (0.62, 1.12) 0.1476 (-1.60, 1.89) 

Cycle 18 0.8358 (0.62, 1.03) 0.3994 (-1.11, 1.91) 

BACC-PS 

eWeight 

Ave. 112 0.7456 (0.60, 0.89) 0.1824 (-1.23, 1.63) 

Staudenmayer, 2009 [25] 1.22 -- -- -- 

Crouter, 2006 [26] -- -- 0.1 (-1.4, 1.5) 

Brage, 2007 [12] * [0.87,1.11]  -- -- 

*[min,max] interval for walking/running activities from Brage, 2007, using 5th, 6th, and 7th calibration levels, originally given in J·kg-1·min-1 , converted to kcal·kg-1·hour-1 (MET). 



114    The Open Biomedical Engineering Journal, 2011, Volume 5 Sazonova et al. 

 The performance of the existing methods given in Table 

3 is shown for comparison, however, all of these studies 

differed in the study protocol, characteristics of participating 

subjects and EE measurement devices. Thus, this 

comparison may be subjective, although, the fact that 

BACC-PS and BACC-PSeWeight models produced 

performance characteristics comparable to those of the 

existing methods, may imply that the proposed methods 

perform well.  

4. DISCUSSION  

 In this study we investigated the feasibility of BW 

estimation using pressure sensors and inclusion of this 

information in the model for energy expenditure prediction. 

To the best of our knowledge this is the first attempt to use 

wearable sensors for automatic BW estimation during 

normal daily activities and the first attempt to evaluate 

impact of BW measurement accuracy on prediction of 

energy expenditure.  

 Automatic estimation of BW and energy expenditure 
should have most utility in individuals engaged in weight 
management programs. In particular, individuals attempting 
to lose BW may find a system that automatically measures 
and records BW a useful tracking application and one that 
promotes continued weight management success. In some 
individuals, the magnitude of weight loss over several 
weeks/months is significant. For example, BW loss the year 
following bariatric surgery may be as large as 67% of excess 
BW (equivalent to 47.6kg for population reported in [18]). 
Such significant changes in BW would eventually lead to 
large errors in EE estimation if one used a pre-surgical BW 
estimate or infrequently updated BW in an EE monitoring 
device.  

 Our results show that the current pressure sensor design 
allows estimation of BW from automatically recognized 
periods of quiet standing with relatively high error (root-
mean squared error of 10.52 kg), however, they also show 
the feasibility of the suggested approach to continuous 
automatic BW estimation during daily activities. We believe 
that these results can be substantially improved by using 
pressure sensors that capture full area under the full plantar 
area rather than a few points used in this study. Extending 
the sensing area may substantially reduce the measurement 
error by capturing loading that may not fall on the current 
sensor locations. Future studies that aim to optimize sensor 
design for weight estimation are needed. In addition, these 
designs and estimation models require validation in free-
living individuals. 

 Daily life is full of brief moments of quiet standing. For 
example, we briefly stand while opening a door, while 
chatting with a colleague or standing in a checkout line. 
Thus, given very short time interval (2s) to produce a single 
BW estimate, multiple measurements can be taken 
throughout a day and averaged to further improve the 
estimation accuracy. A question that is yet to be answered in 
a free living study is how many standing periods can be 
captured in a day.  

 The relatively high prediction error for BW estimation 
did not, however, significantly affect the accuracy of the EE 

prediction. More specifically, BACC-PSeWeight model with 
estimated BWs exhibits prediction performance comparable 
to that of the original BACC-PS model [23]: root-mean 
squared errors were 0.7456 METs and 0.6972 METs 
respectively. This may be explained by additional factors 
that contributed to the model performance: branching and 
involvement of other predictors (metrics from accelerometer 
signals) included into the model. Even with automatically 
estimated BW, the BACC-PSeWeight model is comparable 
with the existing methods for energy expenditure prediction 
in terms of the root-mean-squared error, i.e. Staudenmeyer, 
et al. [25] reported RMSE of 1.22 METs and Brage, et al. 
[12] achieved RMSE ranging between 0.87 and 1.11 in the 
comparable experimental settings (5

th
, 6

th
 and 7

th
 calibration 

levels). As was mentioned previously, due to the differences 
in the test conditions, study protocols, studied population and 
methods for measuring energy expenditure, this comparison 
is relative. Nevertheless, these results indicate that energy 
expenditure can be accurately predicted using SmartShoe 
device without knowledge of the actual BW using only 
estimates obtained from the BW pressure sensors.  

CONCLUSIONS 

 In this study we showed the feasibility of using wearable 

pressure sensors for automatic BW estimation and indirect 

measurement of energy expenditure. Automatic BW 

estimation can potentially reduce the error of energy 

expenditure prediction due to underreporting, BW and 

significant BW changes in certain populations. The results of 

the study show feasibility of using brief periods of 

automatically recognized standing posture to estimate BW 

and use such BW estimates, although BW estimates need an 

improvement in accuracy. Further improvement of the 

wearable system will include improved sensor design and 

free living validation. 
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