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Abstract: Diabetes mellitus (DM) has a growing incidence and prevalence in modern societies, pushed by the aging and 

change of life styles. Despite the huge resources dedicated to improve their quality of life, mortality and morbidity rates, 

these are still very poor. In this work, DM pathology is revised from clinical and metabolic points of view, as well as 

mathematical models related to DM, with the aim of justifying an evolution of DM therapies towards the correction of the 

physiological metabolic loops involved. We analyze the reliability of mathematical models, under the perspective of 

virtual physiological human (VPH) initiatives, for generating and integrating customized knowledge about patients, which 

is needed for that evolution. Wearable smart sensors play a key role in this frame, as they provide patient’s information to 

the models.  

A telehealthcare computational architecture based on distributed smart sensors (first processing layer) and personalized 

physiological mathematical models integrated in Human Physiological Images (HPI) computational components (second 

processing layer), is presented. This technology was designed for a renal disease telehealthcare in earlier works and 

promotes crossroads between smart sensors and the VPH initiative. We suggest that it is able to support a truly 

personalized, preventive, and predictive healthcare model for the delivery of evolved DM therapies.  

Keywords: Diabetes mellitus, personalized therapies, metabolic syndrome, multilevel physiological modeling, virtual 
physiological human, digital healthcare, EHR. 

INTRODUCTION 

 Glycemia in humans must range from 70 to 110 mg/dl. 
Although exogenous factors may alter this concentration 
(food intake, digestion, or exercise), there are pancreatic 
endocrine hormones (mainly insulin and glucagon), that 
maintain this level [1]. The increase of glycemia is the main 
effect associated with diabetes mellitus (DM). 

 Two general types of DM have been classically 
considered, type I and II. These were called commonly as 
Insulin-dependent DM (IDDM) and non-insulin-dependent 
DM (NIDDM), for types I and II respectively [2]. This 
classification could be considered proper in earlier stages of 
type II DM, characterized by high plasmatic insulin 
concentration due to the insulin resistance and the capability 
of  cells to secrete insulin. However, despite physical 
exercise, as well as pharmacological treatments to promote 
the increase of insulin sensitivity (e.g. thiazolidinediones or 
biguanides), in later stages of type II DM,  cells are unable 
to produce enough insulin and the previous division IDDM – 
NIDDM turns misleading. This is particularly important 
since type II DM occurs in 90 – 95 % of cases in the world 
[3]. In spite of this lack, this terminology was proposed by 
the WHO in 1980 and kept in a subsequent meeting in 1985,  
 

 

*Address correspondence to this author at the Multilevel Modelling and 

Emerging Technologies in Bioengineering (M2TB), Research Group, 

Departamento de Ingeniería Gráfica, Escuela Superior de Ingenieros, 

Universidad de Sevilla, C. de los Descubrimientos, s/n , 41092 – Sevilla, 

Spain; Tel: 034 954486160; Fax: 034 954486158; E-mail: mpradov@us.es  
#Authors contributed equally to this work.  

with several additions like gestational DM (GDM), impaired 
glucose tolerance (IGT) and others (for the remaining) [4]. 
Therefore, classification of 1985 was a compromise between 
clinical and etiologic perspectives. 

 The elusive character of DM was explicitly pointed in 
subsequent recommendations, by the American Diabetes 
Association (ADA) in 1997 and WHO in 1996 and 1999 [4]. 
According to this last classification, type I DM is caused 
mainly by destructions or impairment of pancreatic  cells, 
whereas type II DM is associated with deficiencies in insulin 
secretion (including hyperinsulinemia) due mainly to a 
decrease on insulin sensitivity. This new classification tries 
to include also several clinical stages of DM, and therefore it 
is kept the IGT and it is added the impaired fasting glucose 
(IFG). The IGT and IFG are considered previous to DM, and 
thus they are taken as risk factors. Gestational DB is also 
kept and completed with gestational IGT.  

 The foundation of this current classification is indeed 
more complex, because it tries to include also etiologic 
factors. Moreover, many clinical studies claim that there is a 
need to review preestablished concepts regarding DM. 
Causal analyses and relationships among physical exercise, 
dyslipidemia, insulin resistance, and metabolic syndrome are 
key concepts in this task [5, 6]. 

 A decade after last recommendation from ADA and 
WHO, current scientific knowledge, together with poor 
advances in the quality of life of DM patients, suggest that 
the causal relationship: insulin deficiency (cause) – 
metabolic syndrome (effect) is faulty. 
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 Traditional DM therapies are focused to achieve a normal 
glycemia (as the increase of blood glucose concentration is 
the main effect associated with DM) by means of diet 
control, physical exercise and life style, and drugs. The most 
used drug is insulin, excepting in the first stages of type II 
DM. Nonetheless, DM patients die mainly due to 
cardiovascular events, renal insufficiency complications, and 
other complications of DM that are not directly induced by 
glycemia. 

 World population suffering DM was 167 millions in 
2000 and projections for 2030 surpasses 350 millions [7, 8]. 
Mortality rates in DM populations are similar to those ones 
of HIV patients [7]. Growing prevalence and incidence 
justify why this pathology is one of the main targets in the e-
health area. Many studies have demonstrated that the 
improvement in knowledge discovering and accessing is key 
in the management of chronic pathologies [9]. Therefore, 
digital healthcare will evolve towards knowledge-based 
paradigms based on a richer Electronic Health Record 
(EHR). 

 A relevant case of a clinical information management 
system with ability for taking clinical decisions, focused to 
DM and end stage renal disease (ESRD), was presented in 
[10]. One of the strong points of that study was the 
integrative character of the e-health system, coupling the 
clinical decision system with the information workflow of 
the healthcare model. Many subsequent studies have 
confirmed the necessity to join those features for the success 
and adoption of the e-health systems. The authors presented 
also a methodology based on system modeling for the design 
and evaluation of this type of systems. A main goal of that e-
health system was the control of glycemia. This one has been 
kept as the main objective of near all the following e-health 
systems for DM patients. 

 A wealth of research and innovative efforts has been 
developed to improve the quality of life of DM patients by 
means of digital telehealthcare. Results obtained in a 
Randomized Controlled Trial (RCT) study during 9 months 
carried out with type I DM patients aged 18 - 30 years, did 
not show any significant difference between intervention and 
control groups [11]. The digital healthcare system was based 
on a mobile platform (phone + blood glucose monitor) with 
option for recording insulin dose, food intake, and activity 
levels. Differences between intervention and control were 
due to the stronger feedback and counsel received by the 
intervention group. Other RCT study carried out during one 
year over 1665 type II DM patients, aged 55 years or greater 
and included in the Medicare system (USA), demonstrated 
an improvement of glycemia and lipid control, although it 
was very slight (e.g. HbA1C reduction was 0.18% greater in 
the intervention than in control group). This was achieved 
through a modern digital homecare system able to monitor 
plasma glucose and blood pressure remotely, and to provide 
videoconference, clinical data access, and educational 
resources to patients, specialized nurses, and other 
professionals. Other systems are oriented to the diagnostic, 
prevention, and care of complications associated with DM 
[12]. 

 In summary, huge research and innovative efforts have 
been performed to improve the quality of life of DM patients 
by means of digital telehealthcare. Although clinical studies 

show that patients reduce complications if glycemia control 
is improved, it is now clear that therapies focused only on 
that goal are unable to avoid them. Despite this fact, digital 
healthcare systems continue their orientation almost uniquely 
towards the control of glycemia. The current scenario 
suggests that it is necessary a new road for treatment and 
prevention in DM and other chronic pathologies. 

 In this work, it will be depicted a multilevel control 
perspective of human metabolism, with the aim of showing 
several of its main features involved in the DM pathology. 
This analysis will provide clues that will drive the evolution 
of the DM therapies towards the correction of the 
physiological metabolic loops involved. Some technological 
aspects of a computational architecture of e-health designed 
for assisting ESRD patients, which is able to support this 
evolution, will be briefly presented and discussed.  

METHODOLOGY 

 The article presents a new personalized therapy approach 
for DM care. The key aspect of this one is the knowledge of 
the specific etiology of each DM patient. The precise 
knowledge of each DM etiology is linked to a metabolic 
disorder. As a consequence, the article depicts a concise 
description of human metabolism related to DM under a 
multilevel perspective, taking into account the importance of 
control mechanisms and their personalized and adaptive 
character. It is revised also the role of insulin to justify its 
involvement on the current clinical standpoint of DM. 

 The article shows subsequently some mathematical 
models of different aspects and organizational levels of the 
human metabolism related to DM. Those mathematical 
models can be linked to the Physiome initiative. The latter is 
a comprehensive framework for modeling the human body 
using computational methods that can incorporate the 
biochemistry, biophysics and anatomy of cells, tissues and 
organs. The Virtual Physiological Human (VPH) is a similar 
initiative that tries enabling collaborative investigation 
concerning the human body as a complex system, within the 
Seventh Framework Program of the European Commission. 
DM mathematical models are reviewed under the perspective 
of these initiatives. 

 This is followed by a review of the healthcare and quality 
of life (QoL) of DM patients.  

 Previously to the presentation of a new approach for e-
health based on the fusion of VPH with smart sensors, it is 
shown a case study illustrating the main differences between 
an etiology-based treatment, and a treatment based only on 
the correction of hyperglycemia. The case study exposed 
shows a particular DM where the proper knowledge of the 
etiology has allowed the design of a personalized treatment 
that corrects the physiological loops. 

 The new healthcare approach presented in this article 
makes use of concepts developed and evaluated in earlier 
works. 

A MULTILEVEL CONTROL PERSPECTIVE OF 
METABOLISM FOCUSED TO DIABETES 

 The following lines present some relevant aspects and 
mechanisms of human metabolism taking insulin as a pivot, 
with the aim of analyzing its role in the current clinical 
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perspective of DM. The review tries to throw light on the 
evolution of new treatments and healthcare processes 
associated with DM, under a bioengineering perspective. 

 Feedback and feedforward are central in metabolic 
processes. Metabolic control is driven mainly by enzymes, 
although only a percentage of chemical reactions involved in 
metabolism are really regulated, in order to maximize the 
efficacy of the whole system. The most common control 
mechanism is allosteric due to the natural relationship 
between this type of behavior and feedback and feedforward 
loops [13]. Both types of loops have been deeply studied in 
systems engineering and there is a wide and powerful 
mathematical and methodological framework to address with 
them. 

 An additional property in metabolic control is the 
compartmentalization of processes. This property of living 
systems allows using enzymatic proteins for different 
objectives as a function of their placement. Compartmen-
talization requires the presence of membranes or separation 
surfaces, able to decide which substances pass through, as 
well as marking protocols to signal the activation (e.g. 
conformational change by peptide addition). Signaling and 
communication are not limited to cellular dynamics, but they 
act on different cell groups (cell structures) and levels, in 
agreement with functional organizations, such as nephrons in 
kidneys or islets of Langerhans in pancreas. 

 Human physiology involves the integrated regulation of 
all these systems at all levels. Important concepts such as 
robustness, adaptability, modularity and functional 
emergence in living systems can be mathematically analyzed 
under this multilevel regulatory perspective [14-16]. 

 It is usual to divide human metabolism into three great 
paths related to carbohydrates, lipids, and proteins. These 
paths are functionally connected at many places and levels in 
the whole regulatory human physiological system, as we try 
to show in this Section, and will justify a key conclusion: 
Under the unknown etiology of most DM scenarios, the 
preconceived notion of a defect in insulin - glycemia 
subsystem as the cause of DM, should be surpassed. 

 From a systemic point of view, the pancreas plays a key 
role in physiology regulation by secreting insulin and 
glucagon. There are other important hormones secreted by 
pancreas such as amylin or somatostatin, although their 
functions are less known and they exceed the objective of the 
present analysis.  

 Carbohydrates are transformed in oligosaccharides and 
hydrolyzed mainly to glucose, which is absorbed through the 
intestinal tract, and mostly distributed to the liver through 
portal vein. Liver is the main controller of glucose systemic 
circulation. Glucose is converted and stored in glycogen 
mostly in liver. If the storage capacity of liver is exceeded, 
then glucose is converted to triglycerides that go away as 
very low lipoproteins (VLDL). This issue points to one link 
between carbohydrates and lipids paths. Other important 
connections among the three great metabolic paths 
aforementioned will be subsequently emphasized.  

 Glucose is absorbed by tissues thanks to different glucose 
transporters. Liver and gut cells have GLUT-2 transporter 
(high capacity transporter), with a high Michaelis-Menten 
constant Km, which avoid the saturation of these ones despite 

high glucose concentrations. GLUT-2 is also in pancreatic  
cells to assure a proper sensitivity (and even linearity) of this 
organ to a wide range of glucose concentrations. Muscle and 
fat tissue have GLUT-4 glucose transporter, which impedes 
the use of glucose with low plasma concentrations. If this 
situation occurs, myocytes use fatty acids, and fat cells 
inhibit the storage of lipids. Other tissues have cells with 
GLUT-1 or GLUT-3 transporters, characterized by a low 
Km, which allows the use of glucose even with low 
concentration. Neurons and glia are key examples. 

 The effect of insulin on the cell metabolism is mediated 
by the insulin receptor into cell membrane. Fig. (1) shows a 
simplified block diagram of this one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Block diagram of insulin receptor together with associated 

IRS and indications of regulated molecular machinery. Adapted 

from [2]. 

 

 The activation of this molecule, composed by four 
subunits, two  and two  units, promotes the 
autophosphorylation of  subunits, which activate local 
tyrosine kinases inside the cell, which in turns induce the 
phosphorylation of intracellular enzymes. An important 
group of these are denoted insulin-receptor substrates (IRS) 
[2]. Their expression depends on the tissue. It is remarkable 
to underline that insulin acts simultaneously on the three 
major metabolic paths through this insulin receptor. 
Therefore, insulin receptor set up another important link 
among proteins, lipids, and glucose mechanisms, which in 
addition depends on the cell type, and thus on the functional 
organization. 

 From a control point of view, insulin appears as a 
systemic messenger that acts in feedforward loops (from 
upstream substrates) into different organization levels. Its 
action is modulated by the type of cell via expressed IRS. It 
can also act in a direct way into several subcellular levels, 
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modulating feedback loops (from downstream products). 
Some details concerning this issue are clarified in the 
following subsections. 

Carbohydrate Mechanisms 

 Insulin promotes the absorption of glucose into myocytes 
mainly in two situations: after meals and during moderate 
and strong physical exercise. During exercise, muscle fibers 
turn more permeable to glucose, even with low concentration 
of plasmatic insulin. In other situations myocytes use fatty 
acids. This behavior involves different mechanisms at 
different levels. 

 Glucose 6-phosphate (6-P) is the starting point of near all 
metabolic paths related to carbohydrates. These are known as 
glucose-6-P pathways, and include synthesis and degradation 
of glycogen, the pentose phosphate pathway that is needed 
for the synthesis of the ribose 5-phosphate (base of nucleic 
acids), and of course the glycolysis pathway, which is the 
most important (and ancient from a phylogenetic 
perspective) path of glucose-6-P.  

 One of the main objectives of glycolysis is to transport 
the energy from substrates to ATP. The main intracellular 
regulator enzymes in glycolysis are hexokinase, phospho-
fructokinase-1 (PFK-1), and piruvate kinase. These enzymes 
act locally within feedback and feedforward loops, but they 
are also modulated by insulin and glucagon in a feedforward 
way (systemic regulation). Insulin promotes the dephosphor-
ylation of PFK-1 to phosphofructokinase-2 (PFK-2). In 
addition it promotes the dephosphorylation of piruvate 
kinase, which in such a way can be activated by fructose 1, 
6-bisphosphatase (FBP) to be transformed in piruvate. 
Piruvate is the main input to the final stage of glycolysis, the 
tricarboxylic acid cycle or Krebs cycle. This is a key set of 
chemical reactions in cells of aerobic organisms. In 
eukaryotes like humans this cycle occurs in the matrix of 
mitochondrion, in coordination with the oxidative 
phosphorylation. This way, an increase of insulin or a 
decrease of glucagon intensifies the activity of Krebs cycle. 

 A complementary systemic regulation of Krebs cycle 
occurs via the increase of calcium in the citosol, which in 
turn promotes its input in the mitochondrion, and the 
activation of Krebs cycle. In muscle cells, this calcium input 
is promoted by electrical stimuli implied in muscle 
contraction. In other tissues like the brain this calcium 
increase is produced through a second messenger of insulin, 
the inositol phosphate.  

 Insulin also increases the activity of glucokinase, one of 
the main enzymes related to the phosphorylation of glucose 
to glucose-6-P. 

 In the liver, insulin induces the inactivation of liver 
glycogen phosphorylase, which in turn inhibits the 
transformation of glycogen to glucose. This regulation 
mechanism connects with gluconeogenesis, a metabolic 
pathway whose result is the generation of glucose from non-
carbohydrate substrates. It is a set of processes that keep 
glucose concentrations above a minimum value, needed for 
cells like erythrocytes, retina cells, renal medulla, sexual 
organs cells, and neurons, among others. 

 The most important substrates in the gluconeogenesis are 
lactate, glycerol (which comes from hydrolysis of 

triglycerides in fat tissue), and even amino acids that can 
come from muscle proteolysis. Insulin acts also in the 
systemic regulation of gluconeogenesis via the inhibition of 
piruvate carboxylase (PC), through transcription 
mechanisms. The inhibition of PC reduces the conversion of 
piruvate to oxaloacetate, the first stage for glucose synthesis. 
Other hormones, such as glucagon, act in the opposite 
direction. 

 This succinct description of some of the carbohydrates 
pathways shows the multilevel and systemic character of the 
involved regulation cycles, and underlines how insulin acts 
by feedforward loops on the main pathways at different 
organic levels, including the transcriptional system 
(genetics) and proteins, in different functional cell groups 
and tissues, and among functional subsystems. Several key 
connection points among proteins, lipids and carbohydrates 
pathways have also been shown. 

Lipids 

 Insulin promotes the use of glucose and reduces the use 
of lipid in near all tissues. It promotes also the synthesis of 
fatty acids, especially in the liver, from which they are 
carried to fat cells as VLDL. This general behavior is 
supported by a set of metabolic pathways. 

 Lipid metabolism is conditioned by the solubility of these 
compounds. Fatty acids, which are lipophilic, circulate in 
plasma joined to albumin, whereas cholesterol, complex 
lipids, and triglycerides (amphipathic or lipophilic) do by 
means of lipoproteins structures, like the aforementioned 
VLDL. The proteinic component of these compounds is a 
key element to signaling and marking processes. Moreover, 
the weak forces that control the binding of different 
molecules in these aggregates facilitate the interchange of 
elements with cellular membranes. This last issue is also 
implicated in the pathophysiology of DM complications like 
atherosclerosis.  

 A relevant process of lipid metabolism is the synthesis of 
triglycerides. This occurs mainly on the liver, intestinal 
mucosa, and fat tissue. Due to the lack of glycerol kinase on 
fat tissue, the first precursors needed to the synthesis of 
triglycerides in this tissue provide from the glycolysis. 
Therefore, this is another metabolic point where lipids and 
carbohydrates pathways are coupled. 

 The inverse mechanism, the hydrolysis of triglycerides to 
give fatty acids, whose main goal is the oxidative 
degradation to produce energy, is performed via lipase. This 
enzyme is activated by glucagon and growth hormone, 
among others, and inhibited by insulin.  

 Fatty acids are converted in acetyl-CoA (the number of 
molecules depends on the fatty acid) by means of several 
pathways of activation (citosol) and -activation 
(mitochondrion) in many tissues, with the exception of 
nervous system among others. Acetyl-CoA is an input to the 
Krebs cycle. The excess of fatty acids pushes an 
overproduction of acetyl-coA, which due to the sharing use 
of oxaloacetate, both in Krebs cycle and in gluconeogenesis, 
promotes the exhaustion of Krebs cycle. A consequence is 
the conversion of acetyl-coA in ketone bodies. 

 A low level of insulin promotes the circulation of fatty 
acids and the gluconeogenesis in the liver. However, in 
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pathological conditions, where insulin is low and glucose is 
high, glycolysis and gluconeogenesis are very active (liver 
cells have the high capacity glucose transporter GLUT-2). 
This way, both processes compete by oxaloacetate, resulting 
in the increase of ketone bodies, which is a typical symptom 
in patients with type I DM. The associated acute 
complication is ketoacidosis.  

 Despite the importance of cholesterol in the pathogenesis 
of DM, the physiological mechanisms are very complex and 
not well known. It is known that there are feedback control 
mechanisms that inhibit the synthesis of low density 
lipoproteins (LDL) receptors in tissues that use cholesterol, 
which is synthesized mainly in liver and intestinal mucosa. 

 With the exception of pathological conditions, the 
cholesterol ingestion has not a great influence on its 
plasmatic levels. 

Proteins 

 Protein pathways are worse known than carbohydrate 
ones. However, we emphasize here some details that 
illustrate their coupling and multilevel organization. 

 Protein metabolic processes in the liver include 
gluconeogenesis (energy use), synthesis of other nitrogenous 
compounds, and synthesis of the most important plasmatic 
proteins. Insulin induces the protein synthesis and storage, as 
well as the input of amino acids to cells. Growth hormone 
acts in a synergistic manner with insulin, promoting the 
amino acid input to cells. This synergy has been 
experimentally shown in depancreatized and hypophysec-
tomized rats [2], and throws light about the importance to 
prevent DM during growing stages of humans. 

 Insulin acts also in other steps of the nitrogenous 
metabolism. It is a needed factor in the traduction of 
messenger RNA (mRNA), in such a way that without insulin 
the ribosomic molecular machinery does not function 
properly. It also speeds the transcription rate of some DNA 
sequences, promoting the synthesis of a set of enzymes that 
affect the storage of carbohydrates, lipids and proteins. 

 Insulin inhibits also the protein catabolism, in agreement 
with its anabolic character. 

 Accordingly, a pathological low plasma insulin 
concentration induces protein catabolism and liberation of 
amino acids to blood, increasing the urine urea concentration 
and many other dysfunctions. This abnormal protein 
catabolism presents an evocative parallelism with the 
abnormal protein catabolism in End Stage Renal Disease 
(ESRD) patients submitted to periodic hemodialysis [17]. 

Multilevel Dynamics 

 Above Sections show clearly the multilevel, non-
homogeneous, and complex character of metabolic 
regulation in humans. From a systemic point of view, these 
mechanisms act in a coordinated way to adapt the use of 
metabolic substrates in each place (cells) to the intake and 
fasting cycles, physical activity, and environment. The 
insulin is one of the most important systemic messengers 
involved, although it is not the unique. It acts mainly by 
feedforward cycles, although insulin secretion by  cells in 
pancreas requires also a feedback mechanism. 

 The belief concerning DM as a disease related only to 
carbohydrates and insulin led the idea that insulin secretion 
is controlled exclusively by glucose. However different 
studies have shown that  cell insulin secretion depends also 
on plasmatic amino acids, like arginine and lysine, which 
acts amplifying the response of  cells to glucose. As it could 
be expected, some gastrointestinal hormones, like gastric 
inhibitory polypeptide (GIP), act in similar way, promoting 
an anticipatory mechanism to the increase of glucose and 
amino acids after meal.  

 Pancreas -cell receptors are sensible also to other 
hormones involved in metabolic processes, like glucagon, 
growth hormone, progesterone, and estrogen. There are other 
factors implied in the secretion response, as  adrenergic 
stimulation and acetylcholine (positive) or  adrenergic 
stimulation and somatostatin (negative). 

 Regarding dynamical aspects of insulin, several studies 
have measured the relationship between plasma 
concentration and time, after different inputs (e.g. a sudden 
increase on glucose concentration) [1]. Others show that 
insulin release oscillates with a period of 3-6 minutes, even 
in basal conditions, and propose several underlying 
mechanisms [18]. A more detailed explanation is provided in 
the following Section. The high oscillations of glucose con-
centration in the portal vein, from pancreas to liver, together 
with other observations suggest that these oscillations are 
clinically relevant. Moreover, disturbances in this dynamics 
could contribute to insulin resistance in type II DM. 

 This review suggests that current insulin therapies (bolus 
or continuous infusion-based) are not able to correct the 
control loops involved in a personalized manner in each DM. 
Moreover, current insulin therapies could promote changes 
and adaptations at different levels of organic functional 
organizations that degenerate in severe metabolic damages in 
a long term. Cells and organic structures with lesser abilities 
to adapt their metabolite pathways to the rigorous 
physiological conditions associated with this pathology and 
current therapies, as nervous system or retina cells, will be 
more exposed to complications. 

 Damages on multilevel regulatory pathways affect to 
carbohydrate, proteins, and lipids pathways, independently 
of the initial etiology of a particular DM. This agrees with 
the metabolic syndrome underlying DM. 

MATHEMATICAL MODELING IN DIABETES 
MELLITUS 

 The prevalence of DM has stimulated research on several 
aspects related with DM and its complications. Many 
mathematical models have been developed to describe 
different aspects of DM at several levels, from  cells to 
insulin-glucose dynamics. The most relevant mathematical 
models concerning to the physiology underlying DM are 
briefly shown in this Section. We are interested in the ability 
of these ones to integrate and extract biomedical knowledge 
that could be applied in telehealthcare systems. 

 Cells and Pancreatic Islets 

 A huge number of models have been developed to 
describe  cells insulin secretion. These models, in particular 
those proposed by Licko & Grodsky [19, 20] and Cerasi 
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[21], established a reference framework to describe  cells 
function. Few years later, the first widely accepted 
mathematical model concerning the individual function of  
cells was published [22]. 

 The Model proposed by Topp [23] is composed of three 
non linear ordinary differential equations as follows: 

dG

dt
= a b + c I( ) G

dI

dt
=
d G2

e +G2( )
f I

d

dt
= g + h G i G2( )

 

 Where plasma glucose concentration (G) is in mg/dl, 
plasma insulin concentration (I) is in μU/ml, and  cell mass 
( ) is in mg.  

 The biological interpretation of parameters involved is 
shown in Table 1. 

Table 1. Biological Interpretation of Parameters Involved in 

Topp Model 

Parameter Biological interpretation 

a liver glucose production rate (G=0) 

b Insulin-independent rate of glucose elimination 

c Insulin-induced glucose absorption rate 

d Maximum  cells insulin secretion rate 

e Sigmoid turning point 

f Whole-body insulin elimination rate 

g  cells natural death-rate 

h, i Allow the determination of  cells tolerance range 

 

 Topp’s model allows a transition from physiological 
equilibrium state to a hyperglycaemic one. Furthermore, it 
predicts that some defects in glucose and/or insulin dynamics 
can increase glucose at a higher level than  cell mass 
adaptation rate. It provides a  cell mass of 300 mg, which is 
not a valid physiological value, since human  cell mass is 
normally about 850 mg. 

 Hernandez introduced a modification for this model [24], 
through the consideration of insulin receptor dynamics: 

dG

dt
= a b + c R I( ) G

dI

dt
=

d G2

1+ R( ) e +G2( )
f I f R I

d

dt
= g + h G i G2( )

dR

dt
= j 1 R( ) k I R l R

 

 R is the fraction of insulin receptors in cell muscle 
surface. Insulin receptor dynamics is represented through the 
following parameters: j (insulin-receptor recycling rate), k 
(insulin-dependent receptor endocytosis rate), and l (insulin-
independent receptor endocytosis rate). 

 Hernández model improved quantitative results, 
providing a physiological value of  cell mass, associated 
with experimental receptor dynamics. It predicted, under 
normal conditions, basal levels of β cell mass, glucose and 
insulin dynamics, and insulin receptors, similar to those 
found experimentally. The model shows how β cell mass 
control malfunction (represented by the parameters g, h and 
i) can lead to diabetes mellitus, either creating hypergly-
caemic glucose levels or causing a saddle-node bifurcation 
that leaves the pathological state as a global attractor. 

 Different studies have shown that physical exercise can 
increase insulin sensitivity in a 36%, which allows a 
decrease in insulin levels required to maintain glucose 
concentration. Reduction in insulin equilibrium levels 
implies a lower  cell mass requirement and an increase in 
cellular insulin receptors. However, a sedentary way of life 
(accompanied by obesity) can reduce insulin sensitivity by 
50-100%. Hernandez model predicts an insulin-resistant 
state for a reduction of 60%. 

 However, these models do not consider other hormone 
secreting cells (such  and  cells in the islets of 
Langerhans), which contributes to regulate glucose and 
insulin levels. Furthermore, the consideration of an upper 
bound on β cell mass is desirable in these models, as well 
as the incorporation of insulin sensitivity dynamics. 

 It is worth to remark in this Section the consensus model 
for glucose-stimulated insulin secretion [18]. In this model, 
ATP (generated by mitochondrial metabolism) promotes 
closure of KATP channels. The depolarization of the plasma 
membrane induces the opening of Ca

2+
 channels increasing 

the cytosolic Ca
2+

 concentration, triggering insulin exocy-
tosis. Nonetheless, the Ca

2+
 signal alone cannot explain 

either sustained secretion [25] or the pulsatile nature of 
secretion. As a consequence, the consensus model does not 
explain glucose-stimulated insulin secretion dynamics. In 
subsequent studies, the consensus model mechanism has 
been included in a more general dynamics frame [18]. 

 Current models show a convergence between different 
hypotheses (electrical activity and glycolysis) that explain 
oscillations in the secretion of pancreatic islets. Both 
mechanisms can work in a cooperative manner to produce 
the rhythm secretion of insulin in a period of 5 minutes 
observed experimentally in vivo. The key role in the 
formation of oscillations is attributed to the allosteric 
enzyme phosphofructokinase-M (PFK-M) (PFK isoform in 
muscles), which is activated by physiological micromolar 
concentrations of FBP and adenosine monophosphate 
(AMP), and inhibited by ATP. 

 Bertram and Sherman proposed recently a pancreatic 
islets model, where electrical activity (bursts) was attributed 
to a cytosolic Ca

2+
 feedback on ionic channels. This 

mathematical model reproduces the slower oscillations of 
insulin release by a metabolic subsystem driven by 
glycolysis [26]. The interaction of glycolytic and Ca

2+
 

insulin release dynamics can result in a wide variety of 
rhythmic behaviours in pancreatic islets, in agreement with 
experimental results. 

Systemic Modeling 

 Mathematical modeling of diabetes has focused mainly to 
the dynamics of glucose and insulin levels in a temporal 
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scale of minutes [27]. Generally, these models are used as 
tools to measure rates (production and absorption of glucose 
and secretion of insulin), or sensitivities (insulin sensitivity 
or glucose effectiveness). Most of these models are 
dedicated to glucose-insulin dynamics, pointing to a lack of 
interest in the consideration of other relevant aspects of the 
metabolism. 

 In 1939, Himsworth and Ker introduced the first 
approach to measure insulin sensitivity in vivo [28]. Later, 
several mathematical models were proposed in this area, 
being a remarkable example the one proposed by Bolie in 
1961 about blood glucose regulation [29]. Nevertheless, the 
factual beginning of glucose-insulin dynamics modelling is 
determined by the publication of the minimal model by 
Bergman and Cobelli [27]. Since the publication of the 
minimal model, their authors have published a number of 
works completing, revising or validating it. Several authors 
have introduced modifications to the minimal model, being 
remarkable the one proposed by Derouich and Boutayeb, 
which introduced parameters related to the physical exercise 
[30]. 

 However, the minimal model and subsequent derivations 
show several drawbacks. For example, it considers the 
glucose-insulin system alone, neglecting that it is only part 
of a complex metabolic regulation network, as described in 
the previous Section. Furthermore, some of the mathematical 
results provided by the model are not realistic, and it is 
necessary the introduction of an artificial variable to account 
for the delay in the insulin action. 

 To overcome some of these limitations, De Gaetano and 
Arino proposed a differential delay in the insulin action in 
their dynamical model [31, 32]. Other authors have shown 
the ability of this model to allow the simultaneous 
determination of insulin secretion and glucose absorption 
[33]. The dynamics of glucose-insulin has been described 
also by means of optimal control strategies [34]. 

 The mathematical description of insulin distribution in 
physiological compartments presents also many difficulties. 
The main trouble in the case of subcutaneous insulin kinetics 
resides in the distribution of subcutaneous reservoirs and 
their transport to plasma. Several models have been 
proposed for addressing this issue: Kobayashy (M1), 
Kraegen (M2), Puckett (M3), Shimoda (M4), Berger (M5) 
and Trajanoski (M6) [35]. Their approaches include lumped 
parameter modelling methodologies (M1, M2, M3, M4), 
empirical description of the subcutaneous insulin absorption 
based on published data (M5), and physicochemical 
distributed-parameter models (M6). A review of the main 
modelling and simulation methodologies that facilitates the 
interpretation of this taxonomy appears in [36]. 

Integration and Extraction of Knowledge from DM 
Mathematical Models 

 In the last decades, a number of mathematical models 
have been published describing different aspects of DM. We 
have shown several approaches at different levels, which 
could be integrated under a proper multilevel modeling 
methodology. Marée highlights the importance of modeling 
individual cells to explain the beginning of diabetes [37], as 
they are constituent parts of higher functional level models. 

 Due to the inherent complexity of biological systems, the 
development of mathematical models to describe them is a 
complicated task. One of the most successful approaches to 
develop them is based on their hierarchical organization. 
Accordingly, a model can be constructed by means of the 
connection of simpler models which describes phenomena at 
low levels [38]. Models can represent different parts of a 
system at different levels, allowing their integration in order 
to provide the behaviour of the whole system. This fact is a 
key point in the approach of DM modelling, due to the 
wealth of multilevel control loops involved.  

 The integrative approach is nowadays a key aspect in 
mathematical modelling of biological systems. Multilevel 
modelling in the frame defined by the Physiome project is 
possible through the connection of models with appropriate 
tools. Among these tools, we can highlight here ERATO 
System Biology Workbench (SBW), a framework that 
allows both legacy and sharing resources at different levels 
[39]. However, this type of integration is not possible in the 
case of strongly coupled models, because dynamics is 
distorted. 

 Multilevel modeling approach applied to diabetes is a 
promising tool to study the whole system behavior and also 
to investigate the effects of specific malfunctions on its 
global behavior. These models must connect the dynamics of 

 cell mass with the dynamics of insulin and glucose, within 
the human metabolic network. 

 In a telehealthcare system, these multilevel models 
describing different aspects of DM can constitute a key 
knowledge generation layer [40]. There are some linking 
points between this layer and the Evidence Based Medicine 
(EBM) approach. EBM symbolizes the rational, explicit, 
judicious and current use of the best scientific evidence 
concerning treatments and outcomes in different pathologies 
[41]. Unfortunately, there is a lack of methodologies able to 
address EBM sources through expert systems. 

QUALITY OF LIFE IN DIABETES MELLITUS: A 
SUCCINCT REVIEW 

 Several techniques to evaluate the quality of life (QoL) of 
DM patients have been developed. One of the first specific 
evaluation methods to quantify the QoL related to DM 
treatments was proposed in 1988 [42]. This method is 
commonly known as DQOL (Diabetes Quality Of Life), and 
assesses five general aspects related with DM and its 
treatment. 

 Several researchers have projected other classification 
methods [43-45]. Nowadays, the most accepted classification 
method is the one based in the Medical Outcome Survey 
[46]. This method assigns a higher score to higher QoL, in a 
scale ranging from 0 to 100. 

 It is generally accepted that DM patients suffer an 
important decrease in their QoL [47]. The quality of life of 
DM patients is deteriorated due to physical and emotional 
DM effects, and several fundamental aspects of human 
behavior are affected, like work activity or family life.  

 Most important complications of DM are classified in 
acute and chronic. Acute complications include ketoacidosis 
(DKA), and non-ketosis hyper-osmolar state (NKHS), but 
chronic complications are the main responsible of the high 
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mortality rate and low QoL of DM patients and they have 
effect on most of the organs [3, 7]. We can divide chronic 
complications into vascular and non-vascular complications. 
First ones are classified into microvascular (retinopathy, 
neuropathy, and nephropathy) and macrovascular (coronary 
artery disease, peripheral vascular disease, cerebrovascular 
disease). Non-vascular complications include gastroporesis, 
sexual dysfunction, and skin changes. 

 Life expectancy of DM patients is 10 years lesser than 
the average. A 72% of type II DM patients suffer at least one 
derived complication and 24 % undergo both microvascular 
and macrovascular complications. Only 7 % of the 
healthcare expenditure is due to insulin and other oral drugs, 
whereas 55 % is due to hospitalization [48]. Near 75 % of 
subjects with DM for more than 15 years undergo diabetic 
retinopathy, whereas 50 % of DM patients have some degree 
of neuropathy [3]. DM patients present also much higher 
prevalence than the average population of cardiovascular 
diseases, stroke, and hypertension. Infections are more 
frequent and severe in this population. Furthermore, non-
healing ulcers that can lead to non-traumatic amputation are 
frequent when the loss of peripheral sensation 
(polyneuropathy) is coupled with impaired microvascular 
and macrovascular junction in the periphery. 

 Many subjects present DM complications when this 
disease is diagnosed, in spite of many studies have shown 
that DM can be detected in earlier stages. This is because 
prevention methods are hardly deployed by the health 
system. To improve the detection of DM (without clinical 
symptoms), the WHO and ADA recommended a combined 
use of IFG and IGT [3]. 

 Moreover, prevention and detection methods of DM lack 
of an integrative and personalized view, and therapies are 
gross and non-personalized.  

 Nevertheless, in spite of the disappointing situation given 
by these facts and the growing prevalence and bad QoL, 
mortality, and morbidity rates of DM patients, advances in 
some monogenic DM types have been achieved. It is worth 
to highlight here the Maturity-onset diabetes of the young 
(MODY) and the neonatal diabetes case, as a case study of 
successful treatment. MODY and neonatal diabetes are -cell 
disorders, and they are currently recognized as a set of 
discrete subtypes defined by a genetic etiology.  

 In particular, MODY is considered a DM different from 
type I and II, although it is usually diagnosed as one of them. 
MODY is not insulin dependent, in opposition to Neonatal 
diabetes, which is insulin dependent and diagnosed in the 
first 3 months of life. The most common permanent neonatal 
diabetes (which required continual insulin treatment) is due 
to a mutation in the KCNJ11 gene encoding the Kir6.2 
subunit of the -cell KATP channel [49]. This channel 
controls insulin secretion in pancreatic -cells. Most of 
patients with heterozygous mutation Kir6.2 were treated by 
insulin administration until the etiology was known. 
Afterwards, it was tested the possibility to induce insulin 
secretion by means of sulfonylureas, taking profit that they 
bind to the sulfonylurea receptor 1 of the KATP channel and 
close the channel through a route independent of ATP. 

 Different physiological and clinical studies confirmed 
this hypothesis with successful outcomes. Studies confirmed 

also the normalization of glucose in the long-term (by 
HbA1c), as well as the reduction of hypoglycemic events 
with respect to insulin treatment. Continuous monitoring 
during 24 hours showed also a good control of glycemia 
during meals [50-52]. Moreover, a recent work indicates that 
glycemia is recovered when switching from insulin treatment 
to sulfonylurea even in adult patients with permanent 
neonatal diabetes associated with KCNJ11 mutation [53]. 

 Despite we are aware that neonatal DM is a very 
particular case in this pathology, it has been presented with 
the goal to illustrate the difference between a treatment based 
on the etiology and a treatment designed to correct the main 
homeostatic dysfunction, that is, hyperglycemia. From a 
physiological point of view, the treatment shown in the case 
study is able to restore regulatory loops, whereas current 
insulin treatments do not. 

VPH AND SMART SENSORS IN THE FOUNDATION 
OF A NEW TELEHEALTHCARE PARADIGM 

 The treatment of the case study depicted in the previous 
Section tries, in essence, to reestablish physiological control 
loops. The advantages of this approach have been clarified in 
Section 3. The main handicap of this one it is the necessity 
of a better knowledge of the physiological basis of each 
patient etiology. A methodology and technology that 
addresses in a synergistic manner the discovering of causal 
mechanisms of metabolic syndrome, as well as the use of 
this knowledge to advance towards personalized treatments 
that correct physiological control loops, is presented in this 
Section. 

E-Health and Smart Sensor-Based Supervision 

 Health personalization has become a main objective in 
the development of e-health systems. To achieve it, 
continuous and ubiquitous biosignal monitoring has acquired 
a key role. Here we propose an integrative and personalized 
approach for e-health systems that is founded partly in smart 
sensors. A common attribute of smart sensors is their 
reactive character, which is accomplished by adapting them 
to environmental stimuli thorough signal processing 
algorithms, adaptive control and intelligent decision-making.  

 The effective integration of the different elements that 
comprise a sensor system can accomplish behaviour similar 
to that observed in biological systems, using available 
energy in the most efficient way. These systems regulate 
their internal parameters in order to response to changes in 
environmental conditions. This ability is an essential aspect 
of biological organisms.  

 Synergistic approaches among engineers that develop 
smaller and more integrated adaptive technologies, biologists 
that discover increasingly selective and sensitive living 
mechanisms, and material scientists, are producing new 
ways to build smart sensors [54]. 

 An example of smart sensor in e-health is presented in 
[55]. It shows a novel system for the analysis of human 
movement and detection of physical risk activities on the 
elderly, using smart sensors with ambient intelligence, 
multimodal capacity, and reactivity to the environment, 
within a wearable distributed computing architecture. A key 
element in this architecture is the IASP (intelligent 
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accelerometry sticking plaster), which performs 
accelerometer signal processing and transmits re-sampled 
signals and impact warnings to a WBS (wearable station 
base). The WBS is connected to a Smartphone that performs 
a deeper signal analysis as requested. The two-layer 
processing architecture of the wearable multimodal smart 
sensors allows the achievement of hard functional 
specifications, as is the personalization and real time 
learning, overcoming limitations of earlier human movement 
monitors. A previous work demonstrated how the efficiency 
of a smart movement sensor is clearly improved when it is 
personalized to the user [62]. 

E-Health and Model-Based Integrative Research 

 VPH is a European initiative that derives from Physiome. 

The latter started in the middle of 90’s with the aim of 

facilitating collaboration, distributed access, and integration 

of biomedical knowledge at different organizational living 

levels [56-58]. Physiome and VPH programs address the 

description of biological and physiological systems by 

means of mathematical models whose main common point is 

that they are not data-driven. These models can use 

deterministic or stochastic approaches, continuous or 

discrete dynamics, and lumped or distributed processes. 

However, their nature is predictive by nature, as opposition 

to data-driven models [59]. Data-driven models are built by 

fusing experimental data (e.g. training) with a methodology 

able to organize the model’s output space according to these 

data. Relevant examples of data-driven models are neuronal 

networks, regression models, rules-based expert systems and 
support vector machines. 

 Physiome and VPH address with advanced concepts of 

complex systems dynamics, such as multilevel feedback 

loops, adaptation, non-linearity, emergence of organization 

levels, and robustness to perturbations [16]. They appear as 

initiatives whose ultimate goal is to allow scientists and 

medical practitioners understanding and applying knowledge 

regarding the causes of diseases from low levels (molecules) 
to the highest systemic level of an organism. 

 One of the challenges of the Physiome and VPH 

initiatives is the development of standards for the exchange 

of information between models. This task requires formal 

ontologies to use a standard nomenclature for model 

components. Several ontologies have been developed in this 

context (Gene Oncology, Foundation Model of Anatomy, 

Open Biological Ontologies). They have incorporated in 

markup language standards for modelling systems to assure 

the semantic interoperability. Therefore, information at 

different spatial scales and levels can be consulted using 

defined ontologies and models hosted in Web databases and 
encoded in markup languages [60]. 

 Another challenge of the Physiome and VPH initiatives 
is to develop open source tools for creating, visualizing, and 
running model simulations [60]. The tools developed in this 
goal are divided into the following categories: creating and 
editing ontologies (Protégé), creating and running 
electrophysiological (CESE, iCell, MozCellMl) and pathway 
models (CellMLeditor/MozCellML, Gepasi, SBW), creating, 
running and visualizing anatomical models (BioPSE, 
cmgui/CMISS, Continuity, SCIRun, Virtual Cell), systems 

physiology (JSIM), and communication between models 
(SBW). 

 A number of virtual human modelling projects are being 
developed. Among these, we can highlight the following 
ones: Visible Human (human anatomy, funded by NLM), 
IUPS Physiome (multi-scale modelling), US Physiome (links 
to models), Virtual Soldier (wound simulation, funded by 
DARPA), Virtual Astronaut (Medical education, funded by 
NASA), EU BioSim (pharmacogenetics, funded by 
European FW 6), and Living Human (biomechanics, funded 
by European FW 6) [60]. 

 The link between e-health and integrative research based 
on networks of mathematical physiological models like those 
ones promoted by Physiome and VPH is recent. One of the 
first e-health systems that promotes this connection was 
presented in [61], and a preliminary proof of concept was 
published in [62]. The capability of integrative research 
initiatives based on VPH and Physiome to provide a 
complementary approach to Predictive, Personalized, 
Preventive and Participatory (4P) Medicine has been more 
recently discussed in [63]. 

 Although the literature hardly mentions the connection 
between e-health and Physiome, there are an increasing 
number of projects connecting e-health with different 
artificial and ambient intelligence systems. In this context, 
we can highlight Tratamiento 2.0 (http://www.indra.es/web 
T20/index.html) and AmiVital (http://www.amivital.es/index. 
php) projects. Tratamiento 2.0 is developing a middleware 
platform for the management and application of intelligent 
treatments, using EBM as knowledge base source. It tries to 
promote the delocalization in supervision and treatment 
delivery. Amivital is developing a technological framework 
that will allow the configuration of services and applications 
for patients, through an efficient use of available ambient 
intelligence technology. 

 Unfortunately, knowledge generation from EBM by 
means of intelligent agents and expert systems is still very 
immature, and thus, the use of expert and intelligent systems 
in healthcare, taking EBM as the source of knowledge is a 
non-solved issue yet. 

Synergy Between Smart Sensors and Integrative 
Research for E-Health 

 To the best of our knowledge, the first synergistic use of 
smart sensors and integrative research for e-health was 
presented in [61]. Fig. (2) presents the information flow 
followed in the knowledge-based digital healthcare system 
presented in that work, which has been adapted to generalize 
the concept of patient image to healthy human image. As 
shown, knowledge discovering and processing follows three 
main layers, smart sensors, human physiological image 
(HPI) simulator, and clinical decision support system. It also 
shows the Remote Access Unit (RAU), which connects the 
assisted user to the services provider centre. 

 The smart sensors layer captures and processes biosignals 
from the associated user in a customized manner, according 
to the better performance of this approach [62]. These data 
feed mathematical models integrated into the HPI 
computational components. The technological architecture of 
these components, denoted previously as PPI, was described 
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in [61] and subsequently in [64]. The HPI simulator is an 
extension of the PPI (patient physiological image) presented 
in the cited work with the aim of extending the services from 
patients (pathologies) to healthy humans (prevention stage). 
HPIs integrate systemic multilevel mathematical models of 
those physiological aspects of the associated human that are 
relevant for the following up. Fig. (3) shows a simplistic 
block diagram focused on the mathematical model included 
into HPI and the signal loops that support the function of 
adapting the HPI to the changes of patient dynamics. 

 Accordingly, the HPI embedded into the second 
processing layer of Fig. (3) acts as a mathematical observer 
of the patient dynamics. Other instances of this mathematical 
model can be executed by means of HPI clones, starting 
from the current state to predict in a short-term the response 
of the patient to several actuations (drug intakes or changes 
in operative conditions of artificial organs like a 
hemodialyzer). This concept was evaluated in [61, 64] in the 
renal area, changing flow rates of an associated dialyzer 
(artificial kidney). 

 The same figure shows how internal biomedical variables 
computed by the model, are also identified and stored into an 
extension of the Electronic Health Record (EHR). 

 Fig. (4) presents an iconic diagram of a mathematical 
model that can be integrated into an HPI. This is an 
extension of the one that was published in [62], by 
considering now the pancreas organ separated from the 
muscular and other tissues block. 

 Figure tries to show the hierarchical and multilevel 
methodology that we are researching. Diagram (a) into Fig. 
(4) shows a pharmacokinetic mathematical model that is 

extended using hierarchical, object-oriented, and non-causal 
mathematical methodologies to integrate more detailed 
knowledge of several tissues. Diagrams (d-e) of Fig. (4) 
present also an iconic draw of an “average” nephron, 
together with the causal diagram concerning the control 
loops related to Lp

*
 (hydraulic permeability through 

aquaporin-2 channels) in the kidney collecting duct cells, at 
genetic (solid arrows), protein (dotted arrows) and 
subcellular level (dashed-dot arrows), where VP is 
vasopressin, PKA is protein kinase, AQP2 is aquaporin 
protein (and TAQP2 total AQP2). The consideration of this 
type of water specific channel in kidney ducts is very 
interesting in DM patients, because they could throw light on 
the evolution of renal disease in these population [65]. 

 As indicated, Fig. (4) illustrates some details of the 
methodology followed in HPI models. As pharmacokinetic 
models can be considered simplified physiological models, 
we start from a whole body diagram (a) based on a 
pharmacokinetic approximation. This starting model can be 
extended considering anatomical aspects together with a 
multilevel extension of some subsystems, like organs and 
other groups of functional organic elements. 

 This manner, Fig. (4) extends the description of the 
pharmacokinetic renal system to describe the dynamics of 
renal cell groups into their basic functional units. This 
methodology requires an adequate technology which allows 
the re-use of submodels (simulation components) at different 
scales and levels. It is necessary the use of a non-causal 
modelling language to avoid incompatibilities among models 
developed through different methodologies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Information flow followed in a knowledge-based digital healthcare system, adapted from [61]. 
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 Fig. (2) presents also a last and highest level processing 
layer that uses knowledge from HPI’s layer to support the 
clinical decision. This processing layer is associated with 
driven-data models defined by expert systems, which in turn 
can integrate Evidence-based Medicine (EBM) and ambient 
intelligence sources (like Tratamiento 2.0 or Amivital 
projects, mentioned in Section 6.2).  

 Although EBM sources present methodological problems 
with respect to the manner in which they must be traduced to 
the clinical praxis and with respect to the integration into 
artificial intelligence subsystems [66-68], the inclusion of an 
intermediate and predictive layer based on HPIs could help 
to solve some of these problems. It takes into account that 
HPIs provide prediction based on causal mechanisms, 
whereas EBM sources complement this knowledge with 
scientific evidence non-based on true causal relationships but 
supported on statistical data. 

 The EHR database, as indicated in Fig. (3), requires an 
extension concerning to the type of information kept 
regarding the patient. This is a delicate issue, since EHR is 
the pivot over modern digital healthcare systems integrate 
patient-based knowledge, treatment following up, 
biomedical signal monitoring, and organizational and 
professional workflow. There is still no consensus regarding 
the manner to measure the effectivity of EHR on hospitals 
[69], and there is still difficulties concerning the fulfillment 
of clinical standards. Moreover, the information that must be 
added to EHR according to the methodology proposed in this 
work is very sensitive. 

 However, despite these difficulties, current tendencies on 
knowledge-based e-health systems point to the convergence 
between this area and integrative research based on 
Physiome and other Systems Biology initiatives. This 
convergence will promote the discovering of knowledge 
regarding the pathophysiology of DM, and it suggests an 
approach to achieve a true personalized medicine, with 
treatments oriented to the restoration or compensation of 
damaged physiological systems. 

DISCUSSION AND CONCLUSION 

 The presented methodology shares objectives with the 
Physiome initiative, and helps to solve some of its lacks, 
thanks to the fusion of object-oriented hierarchy and 
mathematical non-causal modelling language paradigms into 
a telehealthcare approach. 

 Reusable multilevel physiological models are developed 
in the frame of this methodology, which avoids the 
mathematical decoupling of a system into its constituent 
mathematical submodels, each one described in the proper 
functional hierarchical level. Therefore, our methodology 
allows a true multilevel description of strongly coupled 
subsystems. 

 This is an issue still non-solved in Physiome, where 
system models pertaining to different organizational living 
levels are connected via tools like the System Biology 
Workbench (SBW), impeding a strong coupling among 
them. 

 We use standards for the exchange of information 
required to achieve the cooperative use of different models 
and adopt a standard nomenclature based on formal 
ontologies for model components, in agreement with the 
Physiome initiative. 

 It is worth to note that it is necessary an effort to connect 
modelling languages selected in the architecture depicted in 
this article with those used in Physiome. For this objective, 
an XML-based language (ELML) for coding mathematical 
models based on our multilevel modelling methodology, as 
well as a conversion tool between the JSim's Mathematical 
Modelling Language (MML) used in Physiome and ELML, 
are being developed. Mathematical models in ELML need to 
be converted to EcosimPro Language (EL) previously to be 
executed. This tool will strongly boost the diffusion of our 
methodology among research groups working in Physiome – 
VPH initiatives.  

 Smart sensors play a key role in the computational 
architecture presented, as they constitute the first processing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Adaptive mathematical model included into the HPI component of the presented digital healthcare, adapted from [64]. 
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layer of knowledge generation. Smart sensors acquire 
biomedical inputs, process them in a customized and 
distributed manner, and transmit information to the HPI’s 
layer. The adaptive feature of smart sensors is also critical, 
with the aim of providing them the ability to evolve together 
with the linked user and their environment, in a reactive and 
transparent manner. Accordingly, these sensors provide 
ambient intelligence to the system. 

 There is a strong need to seek methodologies and 
technologies which can bring added values to e-health 
system and facilitate the discovering and management of 
customized biomedical knowledge regarding the assisted 
users. This fact supports the change of paradigm in 
healthcare, from the current centralized model focused to the 
illness to a truly personalized, preventive, predictive, and 
participatory (4P) healthcare model focused to the health. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Iconic diagrams of a mathematical model integrated into an HPI. Extended from [62]. 
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 An advantage of such change of paradigm is the transfer 
of many of Physiome goals to telehealthcare environments, 
which will strongly speed up the flux of knowledge between 
clinical and researchers. 

 Notwithstanding Physiome and VPH initiatives, as tools 
to characterize the biomedical knowledge of humans, are 
currently in a preliminary stage. It is necessary an 
international effort to advance in this task. We claim that the 
hybridizing VPH/Physiome – based initiatives with 
knowledge discovering and managing technologies for e-
health, as we do with the HPI concept, will push the 
maturation of both areas and will improve the life 
expectancy and quality of life of the citizens. 
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