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Abstract: Alzheimer’s disease (AD) is one of the most frequent disorders among elderly population and it is considered 
the main cause of dementia in western countries. This irreversible brain disorder is characterized by neural loss and the 
appearance of neurofibrillary tangles and senile plaques. The aim of the present study was the analysis of the 
magnetoencephalogram (MEG) background activity from AD patients and elderly control subjects. MEG recordings from 
36 AD patients and 26 controls were analyzed by means of six entropy and complexity measures: Shannon spectral 
entropy (SSE), approximate entropy (ApEn), sample entropy (SampEn), Higuchi’s fractal dimension (HFD), Maragos and 
Sun’s fractal dimension (MSFD), and Lempel-Ziv complexity (LZC). SSE is an irregularity estimator in terms of the 
flatness of the spectrum, whereas ApEn and SampEn are embbeding entropies that quantify the signal regularity. The 
complexity measures HFD and MSFD were applied to MEG signals to estimate their fractal dimension. Finally, LZC 
measures the number of different substrings and the rate of their recurrence along the original time series. Our results 
show that MEG recordings are less complex and more regular in AD patients than in control subjects. Significant 
differences between both groups were found in several brain regions using all these methods, with the exception of MSFD 
(p-value < 0.05, Welch’s t-test with Bonferroni’s correction). Using receiver operating characteristic curves with a leave-
one-out cross-validation procedure, the highest accuracy was achieved with SSE: 77.42%. We conclude that entropy and 
complexity analyses from MEG background activity could be useful to help in AD diagnosis. 
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1. INTRODUCTION 

 Magnetoencephalography (MEG) is a non-invasive 
technique that allows recording the magnetic fields produced 
by brain activity. It provides an excellent temporal 
resolution, orders of magnitude better than other methods for 
measuring cerebral activity, as magnetic resonance imaging, 
single-photon-emission computed tomography or positron-
emission tomography [1]. A good spatial resolution can also 
be achieved due to the large number of sensors. Moreover, 
the activity in different parts of the brain can be monitored 
simultaneously with whole-head equipments, such as the 
magnetometer used in the present study [1]. The use of MEG 
recordings to study the brain background activity also offers 
some advantages over electroencephalography (EEG) 
signals. Firstly, electrical activity is more affected than 
magnetic oscillations by skull and extracerebral brain tissues 
[1, 2]. Moreover, EEG acquisition can be significantly 
influenced by technical and methodological issues, like 
distance between electrodes and the sensor placement. In 
addition to this, MEG provides reference-free recordings. On 
the other hand, the magnetic signals generated by the human 
brain are extremely weak. Thus, large arrays of 
superconducting quantum interference devices (SQUIDs), 
immersed in liquid helium at 4.2 K, are necessary to detect 
them. In addition, MEG signals must be recorded in a 
magnetically shielded room to reduce the environmental 
noise [1]. Therefore, MEG is characterized by limited 
availability and high equipment cost. 
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 Alzheimer’s disease (AD) is a progressive and 
irreversible brain disorder of unknown aetiology. It is the 
main cause of dementia in western countries, accounting for 
50-60% of all cases [3]. AD affects 1% of population aged 
60-64 years, but the prevalence increases exponentially with 
age, so around 30% of people over 85 years suffer from this 
disease [4]. Additionally, due to the fact that life expectancy 
has significantly improved in western countries in the last 
decades, it is expected that the number of people with 
dementia increase up to 81 million in 2040 [4]. AD is 
characterized by the presence of neuritic plaques and 
neurofibrillary tangles, accompanied by the loss of cortical 
neurons and synapses [5]. Clinically, this disease manifests 
as a slowly progressive impairment of mental functions 
whose course lasts several years prior to death [5]. Usually, 
AD starts by destroying neurons in parts of the patient’s 
brain that are responsible for storing and retrieving 
information. Then, it affects the brain areas involved in 
language and reasoning. Eventually, many other brain 
regions are atrophied. Thus, AD patients may wander, be 
unable to engage in conversation, appear non-responsive, 
become helpless and need complete care and attention [6]. 
Although a definite AD diagnosis is only possible by 
necropsy, a differential diagnosis with other types of 
dementia and with major depression should be attempted. 
The differential diagnosis includes medical history studies, 
physical and neurological evaluation, mental status tests, and 
neuroimaging techniques. 

 The electromagnetic brain activity in AD has been 
researched in the last decades by means of several 
complexity and entropy techniques. The most widely used 
methods to characterize the complexity of a system are the 
first positive Lyapunov exponent (L1) and the correlation 
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dimension (D2). L1 is a dynamic complexity measure that 
describes the divergence of trajectories starting at nearby 
initial states [7], while D2 computes the geometric 
complexity of the reconstructed attractor [8]. For instance, 
Jeong et al. [7] showed that AD patients exhibit significantly 
lower D2 and L1 values than controls in many EEG 
channels. In a MEG study [9], this complexity loss was 
reported only in the high frequency bands. Nevertheless, 
these classical measures for estimating the non-linear 
dynamic complexity have some drawbacks. Reliable 
estimation of L1 and D2 requires a large quantity of data and 
stationary and noise free time series [10, 11]. Since these 
assumptions cannot be achieved for physiological data, other 
complexity measures are necessary for the analysis of brain 
time series. The dimensional complexity of a signal can also 
be estimated directly in the time domain using the fractal 
dimension (FD) without reconstructing the attractor in the 
phase space. In the last decades, the number of algorithms to 
estimate the FD has increased rapidly: Higuchi’s fractal 
dimension (HFD) [12], Maragos and Sun’s fractal dimension 
(MSFD) [13] or Katz’s algorithm [14]. Some of them have 
been successfully applied to EEG/MEG recordings in 
dementia [15, 16]. Finally, other non-linear complexity 
measures, as Lempel-Ziv complexity (LZC) or multiscale 
entropy, have also been used to characterize the brain 
activity in AD [17-20]. 

 Entropy is a concept addressing randomness and 
predictability, with greater entropy often associated with 
more randomness and less system order [21]. Mainly, there 
are two families of entropy estimators: spectral entropies and 
embedding entropies [22]. Spectral entropies extract 
information from the amplitude component of the frequency 
spectrum. On the other hand, embedding entropies are 
calculated directly using the time series. This entropies 
family provides information about how the signal fluctuates 
with time by comparing the time series with a delayed 
version of itself [22]. Both spectral and embedding entropies 
have demonstrated their usefulness in the analysis of 
EEG/MEG background activity in AD. An increase of 
entropy values has been found using approximate entropy 
(ApEn) [20, 21], sample entropy (SampEn) [18, 23], 
Shannon spectral entropy (SSE), Rényi spectral entropy and 
Tsallis spectral entropy [24]. 

 In this study, we have examined the MEG background 
activity in 36 patients with probable AD and 26 elderly 
control subjects using six entropy and complexity measures: 
SSE, ApEn, SampEn, HFD, MSFD and LZC. Some of these 
methods have been already used to characterize the MEG 
activity in AD [15, 17, 18, 20, 24]. Nevertheless, it should be 
noted that previously published studies were based on 
slightly different databases, thus making a direct comparison 
of the results impossible. However, in this paper, all 
complexity and entropy techniques were applied to the same 
MEG database. Our purpose is to test the hypothesis that the 
neuronal dysfunction in AD is associated with differences in 
the dynamical processes underlying the MEG recording. 

2. MATERIALS 

2.1. Subjects 

 In this study, MEG signals were recorded from 62 
subjects: 36 AD patients and 26 elderly control subjects. 

Clinical diagnosis was ascertained by means of exhaustive 
general medical, neurological, and psychiatric examinations. 
All patients and controls underwent a neuropsychological 
evaluation including the Spanish versions of the following 
scales and batteries: Wechsler Memory Scale 3rd Edition 
(WMS-III), Boston Naming Test (BNT), Stroop Test, 
Wisconsin Card Shorting Test (WCST), Silhouettes Test of 
the Visual Object and Space Battery (VOSP), and tests for 
constructive and ideatory apraxia. Additionally, cognitive 
status was screened in both groups with the Spanish version 
[25] of the Mini Mental State Examination (MMSE) of 
Folstein et al. [26], whereas functional status was evaluated 
by means of the Global Deterioration Scale/Functional 
Assessment Staging (GDS/FAST) system [27]. 

 MEGs were obtained from 36 patients (12 men and 24 
women; age = 74.06 ± 6.95 years, mean ± standard 
deviation, SD) fulfilling the criteria of probable AD. They 
were recruited from the “Asociación de Familiares de 
Enfermos de Alzheimer” in Spain. Diagnosis for all patients 
was made according to the National Institute of Neurological 
and Communicative Disorders and Stroke and Alzheimer’s 
Disease and Related Disorders Association (NINCDS–
ADRDA) criteria [28]. The MMSE and GDS/FAST scores 
for these patients were 18.06 ± 3.36 and 4.17 ± 0.45 (mean ± 
SD), respectively. Patients were free of other significant 
medical, neurological and psychiatric diseases than AD and 
they were not taking drugs which could affect MEG activity.  

 The control group consisted of 26 elderly control subjects 
without past or present neurological disorders (9 men and 17 
women; age = 71.77 ± 6.38 years, MMSE score = 28.88 ± 
1.18 points, GDA/FAST score = 1.73 ± 0.45 points; mean ± 
SD). The difference in age between both populations was not 
statistically significant (p-value = 0.1911 > 0.05). All control 
subjects and patients’ caregivers signed an informed consent 
for the participation in this research work. The local Ethics 
Committee approved this study. 

2.2. MEG Recording 

 MEGs were acquired with a 148-channel whole-head 
magnetometer (MAGNES 2500 WH, 4D Neuroimaging) 
placed in a magnetically shielded room at “Centro de 
Magnetoencefalografía Dr. Pérez-Modrego” (Spain). The 
subjects lay on a patient bed, in a relaxed state and with their 
eyes closed. For each subject, five minutes of recording were 
acquired at a sampling frequency of 678.17 Hz, using a 
hardware band-pass filter from 0.1 to 200 Hz. Then, the 
equipment decimated each 5 minutes data set. This process 
consisted of filtering the data to satisfy the Nyquist criterion, 
following by a down-sampling by a factor of 4, thus 
obtaining a sampling rate of 169.549 Hz. Finally, artifact-
free epochs of 5 seconds were processed using a band-pass 
filter with a Hamming window and cut-off frequencies at 0.5 
and 40 Hz. For LZC, the epoch length was 20 seconds, as 
previous studies suggested that LZC values become stable 
for MEG signals longer than 3000 samples [17]. For the 
statistical analysis, the channels were grouped in five brain 
areas (anterior, central, left lateral, posterior and right 
lateral), which are included as default sensor groups in the 
4D-Neuroimaging source analysis software, as Fig. (1) 
shows. For classification purposes with receiver operating 
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characteristic (ROC) curves, the results of each method were 
averaged over all channels. 

3. METHODOLOGY 

 MEG epochs were analyzed by means of three entropy 
measures (SSE, ApEn and SampEn) and three complexity 
measures (HFD, MSFD and LZC). 

3.1. Shannon Spectral Entropy (SSE) 

 In 1948, Claude Shannon defined entropy (H) as a 
measure of the uncertainty associated with a random variable 
[29]. Shannon’s entropy is a disorder quantifier whose 
original meaning implies uncertainty of information in terms 
of disorder, discrepancy and diversity [30]. Several studies 
have applied Shannon’s entropy to the analysis of 
EEG/MEG signals in epilepsy [31], cerebral ischemia [30] 
and AD [23, 24]. Given a discrete random variable Z, with a 
probability distribution P = (p1, p2,…, pN), its Shannon 
entropy H(Z) is given by: 

H (Z ) = H (p1, p2 , ..., pN ) = pi log(pi )
i=1

N

         (1) 

 Powell and Percival [32] proposed the Shannon spectral 
entropy (SSE) technique to calculate the entropy using 
Fourier methods. SSE can be used as an irregularity 
estimator. This irregularity is estimated in terms of the 

flatness of the spectrum. High SSE values imply a broad and 
flat spectrum (e.g., white noise), whereas a predictable signal 
whose frequencies are mainly condensed into very few 
frequency bins (e.g., a sum of sinusoids) provides a low SSE 
value [33]. The algorithm to compute SSE can be described 
as follows: 

1. First of all, the autocorrelation function of each MEG 
epoch filtered between 0.5 and 40 Hz was computed. 

2. Then, the power spectral density (PSD) was obtained 
as the Fourier transform of the autocorrelation 
function. 

3. The spectral content between 0.5 and 40 Hz was 
selected and the PSD was normalized to a scale from 
0 to 1 leading to the normalized power spectral 
density (PSDn). 

4. The definition of the SSE is based on Shannon’s 
entropy computed over the PSDn from 0.5 to 40 Hz: 

SSE = PSDn ( f ) ln
1

PSDn ( f )f =0.5Hz

40Hz

          (2) 

3.2. Approximate Entropy (ApEn) 

 Approximate entropy (ApEn) is a family of statistics that 
quantifies the signal regularity, notwithstanding its stochastic 
or deterministic origin [34, 35]. ApEn assigns a nonnegative 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Illustration of sensor grouping into five brain regions: anterior, central, left lateral, posterior and right lateral. 
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number to a sequence, with larger values corresponding to 
greater apparent process randomness or serial irregularity, 
and smaller values corresponding to more instances of 
recognizable features or patterns in the data [36]. To 
compute ApEn, two input parameters must be specified: a 
run length m and a tolerance window r. The dimensionless 
parameter m represents a window length of the number of 
contiguous time-series points that are compared with one 
another in forming the ApEn calculation. Briefly, ApEn 
measures the logarithmic likelihood that runs of patterns that 
are close (within r) for m contiguous observations remain 
close (within the same tolerance width r) on next 
incremental comparisons [36, 37]. Comparisons between 
data sequences must be made with the same values of m, r 
and N, where N is the number of points of the MEG epoch 
[37]. Pincus has suggested parameter values of m = 1 or m = 
2, and with r a fixed value between 0.1 to 0.25 times the SD 
of the original time series [37]. The parameter r is 
normalized to give ApEn a translation and scale invariance. 
In this study, ApEn was computed with the established 
parameters of m = 1 and r = 0.25 times the SD of the 
analyzed signal [36]. These parameters provide good 
statistical reproducibility for sequences longer than N = 60, 
as considered herein [34, 35]. As ApEn can be applied to 
short and relatively noisy time series, it has been widely used 
to extract potentially useful information from biomedical 
time series such as electrocardiogram [38], EEG [23], 
concentration time series [39] and respiratory recordings 
[40], among others. 

 The algorithm used to compute the entropy of a signal X 
= (x1, x2,..., xN) is as follows [34]: 

1. Form a set of vectors X
1,…, XN–m+1 defined by X

i = (xi, 
xi+1,…, xi+m–1), i = 1,…, N – m + 1. These vectors 
represent m consecutive values of X, starting with the 
i-th point. 

2. Define the distance between X
i and Xj, d[Xi, Xj] as the 

maximum absolute difference between their 
respective scalar components: 

d[Xi , X j ] = max
k=0,...,m 1

| xi+ k x j+ k |           (3) 

3. For a given X
i, let N

m(i) denote the number of j (j = 
1,…, N – m + 1) so that d[Xi, X

j]  r. Thus, for i = 
1,…, N – m + 1: 

Cr
m (i) =

Nm (i)

N m +1
           (4) 

Cr
m(i) measure, within a tolerance r, the regularity or 

frequency of patterns similar to a given one of 
window length m. 

4. Compute the natural logarithm of each Cr
m(i) and 

average it over i: 

m (r) =
1

N m +1
lnCr

m (i)
i=1

N m+1

          (5) 

5. Increase the dimension to m + 1 and repeat the 
previous steps to obtain Cr

m+1(i) and m+1(r). 

6. Finally, ApEn is defined as: 

ApEn(m, r) = lim[
N

m (r) m+1(r)]          (6) 

7. As the signal length N is finite, ApEn is estimated by 
the statistic: 

ApEn(m, r,N ) = m (r) m+1(r)           (7) 

3.3. Sample Entropy (SampEn) 

 Sample entropy (SampEn) is an embedding entropy that 
quantifies the signal irregularity: more irregularity in the data 
produces larger SampEn values [41]. This metric solves 
some problems associated with ApEn. The ApEn algorithm 
counts each sequence as matching itself to avoid the 
occurrence of ln(0) in the calculations and this has led to 
discussion of the bias of ApEn [41]. To reduce this bias, 
Richman and Moorman have developed the so called 
SampEn. SampEn is largely independent of the signal length 
and displays relative consistency under circumstances where 
ApEn does not. Additionally, the algorithm used to compute 
the SampEn is simpler than the ApEn one [41]. Despite its 
advantages over ApEn, the use of SampEn is not widespread. 
This measure has been used to study some biological signals, 
such as heart rate time series [42, 43], EEG data [23, 44] and 
MEG recordings [18]. SampEn has two input parameters: a 
run length m and a tolerance window r. SampEn is the 
negative natural logarithm of the conditional probability that 
two sequences similar for m points remain similar at the next 
point [41]. For this study, SampEn was calculated with 
parameter values m = 1 and r = 0.25 times the SD of the 
original data sequence. 

 To calculate the SampEn(m, r, N) from a time series, X = 
(x1, x2,..., xN), one should follow these steps [41]:  

1. Form a set of vectors Xm
1,…, Xm

N–m+1 defined by Xm
i = 

(xi, xi+1,…, xi+m–1), i = 1,…, N – m + 1.  

2. The distance between Xm
i and Xm

j, d[Xm
i, Xm

j], is the 
maximum absolute difference between their 
respective scalar components: 

d[Xm
i , Xm

j ] = max
k=0,...,m 1

| xi+ k x j+ k |          (8) 

3. For a given Xm
i, count the number of j (1  j  N – m, 

j  i), denoted as Bi, such that d[Xm
i, Xm

j]  r. Then, 
for 1  i  N – m, 

Bi
m (r) =

1

N m 1
Bi            (9) 

4. Define Bm (r)  as: 

Bm (r) =
1

N m
Bi
m (r)

i=1

N m

         (10) 

5. Similarly, calculate Ai
m (r)  as 1/(N – m + 1) times the 

number of j (1  j  N – m, j  i), such that the 
distance between Xm+1

j and Xm+1
i is less than or equal 

to r. Set Am (r) as: 

Am (r) =
1

N m
Ai
m (r)

i=1

N m

         (11) 
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Thus, Bm (r) is the probability that two sequences will match 

for m points, whereas Am (r)  is the probability that 
two sequences will match for m + 1 points. 

6. Finally, define: 

SampEn(m, r) = lim
N

ln
Am (r)

Bm (r)
       (12) 

which is estimated by the statistic: 

SampEn(m, r,N ) = ln
Am (r)

Bm (r)
        (13) 

3.4. Higuchi’s Fractal Dimension (HFD) 

 The term FD was introduced by Mandelbrot to study 
temporal or spatial continuous phenomena that show 
correlation into a range of scales [45]. Applied to brain 
recordings, FD quantifies the complexity and self-similarity 
of these signals [46]. Many algorithms are available to 
compute FD, like those proposed by Higuchi [12], Maragos 
and Sun [13], and Katz [14]. Higuchi’s fractal dimension 
(HFD) is an appropriate method for analysing biomedical 
signals [46], as MEG recordings, due to the fact that it 
provides more accurate estimation of FD than other 
methods. Higuchi’s algorithm calculates the FD directly 
from time series. As the reconstruction of the attractor phase 
space is not necessary, this algorithm is simpler and faster 
than D2 and other classical measures derived from chaos 
theory. On the other hand, Higuchi’s algorithm is more 
sensitive to the noise level than other measures, producing a 
sensible, slightly distorted, translation towards higher FD 
values [46, 47]. HFD has already been used to analyse the 
complexity of EEG signals [46, 48] and MEG recordings 
[15]. 

 The detailed algorithm for the computation of HFD is as 
follows [12]: 

1. Given a time series X = (x1, x2,..., xN), form k new 

time series m

k
X : 

Xk
m
= xm , xm+ k , ..., x

m+ int
N m

k
k

        (14) 

where k is an integer that indicates the discrete time interval 
between points and m, also integer, denotes the initial 
time value. Lastly, int(a) represents the integer part of 
a.  

2. The length of each new time series can be defined by: 

L m, k( ) =

xm+ ik xm+ i 1( ) k
i=1

int
N m

k

R

k
       (15) 

where R = N 1( ) int
N m

k
k  is a normalization 

factor. 

3. The length of the curve for the time interval k is 
defined as the average of the lengths L(m,k), for m = 

1, 2, …, k:  

L k( ) =
1

k
L m, k( )

m=1

k

         (16) 

4. Finally, HFD is defined as the slope of the line that 

fits the pairs ln L k( ) , ln 1 / k( ){ } , for k = 1, 2,..., 

kmax, in a least-squares sense. In order to choose an 
appropriate value of the parameter kmax, the criterion 
proposed by Doyle et al. [49] was used. HFD values 
were plotted against a range of kmax. The point at 
which the FD plateaus is considered a saturation point 
and that kmax value should be selected. Using this 
criterion, a value of kmax = 56 was chosen in our 
study. 

3.5. Maragos and Sun’s Fractal Dimension (MSFD) 

 The method proposed by Petros Maragos and Fang-Kuo 
Sun is other way to measure the FD of a signal [13]. The FD 
of time series is calculated by using morphological erosion 
and dilation function operations to create covers around a 
signal graph at multiple scales. This method has some 
computational advantages. Its computational complexity is 
linear with respect to both the signal length and the 
maximum scale [13]. Moreover, Maragos and Sun’s fractal 
dimension (MSFD) gives a good approximation for a very 
small number of points [46]. Additionally, the results 
achieved with synthetic signals showed average estimation 
errors of about 2-4% [13]. Accardo et al. [46] confirmed 
these results. MSFD has been used for the characterization of 
the Spanish fricatives sounds [50] and for the analysis of sea 
surface images [51]. In other study, the method was 
compared with Higuchi’s algorithm for the analysis of EEG 
signals [46].  

 Given N points from a time series X = (x1, x2,..., xN), the 
algorithm to estimate MSFD is the following [13, 46]: 

1. Select a structuring element B. There are three 
possibilities for the selection of B: a 3 x 3 pixel 
square, a 5-pixel rhombus, and a 3-pixel horizontal 
segment. In this work, we have used the last one, with 
the following associated function g [13]: 

gj = 0   j = –1, 0, 1 

gj = –    j  –1, 0, 1         (17) 

2. The function g is used to recursively perform the 
support-limited dilations and erosions of the time 
series X by g

d at different scales. In our case, the 
dilation operation (for erosions, the expressions are 
analogous) corresponds to: 

X S g
d( )

n
= max xn 1, xn , xn+1{ }  d = 1 

X S g
d+1( )

n
= max X S g

d( )
n 1
, X S g

d( )
n+1{ } d  2     (18) 

3. Then, the cover areas are computed for different 
scales d = 1, 2,…, dmax: 
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A d[ ] = X S g
d( )

n
X S g

d )
n(

n=1

N

 d = 1, 2,…, dmax      (19) 

4. Finally, MSFD is defined as the slope of the line that 

fits the pairs ln A d[ ] D2( ), ln 1 / D( ){ }  in a least-

squares sense, where D = 2  d / N. In order to select 
an appropriate value of the parameter dmax, the 
heuristic rule proposed by Maragos and Sun [13] was 
used.  

 

3.6. Lempel-Ziv Complexity (LZC) 

 The LZC algorithm was proposed by Lempel and Ziv to 
evaluate the randomness of finite sequences [52]. It is a 
nonparametric and simple-to-compute measure of 
complexity for one-dimensional signals that does not require 
long data segments to be calculated [53]. Larger LZC values 
correspond to more complex data. Previous studies have 
shown that LZC mainly depends on the bandwidth of the 
signal spectrum, although a slight dependence on the 
sequence probability density function was also found [48, 
54]. Additionally, LZC could be interpreted as a harmonic 
variability metric [54]. LZC has been used to study the 
relationship between brain activity patterns and depth of 
anesthesia [53], to characterize the complexity of DNA 
sequences [55], and to quantify the complexity in uterine 
electromyography [56]. Due to the fact that LZC analyzes a 
finite symbol sequence, the given signal must first be coarse-
grained [53]. In this study, a binary (zeros and ones) 
conversion was used, since previous studies found that this 
kind of conversion may keep enough signal information [53, 
54]. The data points were compared to a threshold, Td. We 
fixed Td to the median of the analyzed signal, as partitioning 
about this value is robust to outliers [56]. By comparison 
with Td, the original data X = (x1, x2,..., xN) are converted into 
a 0-1 sequence P = (s1, s2,..., sN), with si defined by [53]: 

si =
0 if xi < Td
1 if xi Td

         (20) 

 The string P is scanned from left to right and a 
complexity counter c(N) is increased by one unit every time 
a new subsequence of consecutive characters is encountered 
in the scanning process. The detailed algorithm for the 
measure of LZC is as follows [53, 56, 57]: 

1. Let S and Q denote two subsequences of the original 
sequence P. SQ is the concatenation of S and Q, while 
SQ  is a string derived from SQ after its last character 
is deleted (  means the operation to delete the last 
character). Let v(SQ ) denote the vocabulary of all 
different substrings of SQ . 

2. At the beginning, the complexity counter c(N) = 1, S 
= s1, Q = s2, SQ = s1, s2 and SQ  = s1. 

3. For generalization, suppose that S = s1, s2,…, sr, Q = 
sr+1 and, therefore, SQ  = s1, s2,…, sr. If Q  v(SQ ), 
then Q is a subsequence of SQ , not a new sequence. 

4. S does not change and renew Q to be sr+1, sr+2, then 
judge if Q belongs to v(SQ ) or not. 

5. The previous steps are repeated until Q does not 
belong to v(SQ ). Now Q = sr+1, sr+2,…, sr+i is not a 
subsequence of SQ  = s1, s2,…, sr+i–1, so increase the 
counter by one. 

6. Thereafter, S and Q are combined and renewed to be 
s1, s2,…, sr, sr+1,…, sr+i, and sr+i+1, respectively.  

7. Repeat the previous steps until Q is the last character. 
At this time, the number of different substrings is 
c(N), the measure of complexity. 

 In order to obtain a complexity measure independent of 
the sequence length, c(N) should be normalized. If the length 
of the sequence is N and  is the number of different 
symbols, it has been proved that the upper bound of c(N) is 
given by [52]: 

c(N ) <
N

1 N( ) log (N )
         (21) 

where N is a small quantity and N  0 (N  ). In general, 
N/log (N) is the upper limit of c(N), i.e. 

lim
N

c(N ) = b(N )
N

log (N )
          (22) 

 For a binary conversion  = 2, b(N)  N/log2(N) and c(N) 
can be normalized via b(N): 

C(N ) =
c(N )

b(N )
          (23) 

C(N) reflects the arising rate of new patterns along with the 
sequence. 

4. RESULTS AND DISCUSSION 

 SSE, ApEn, SampEn, HFD, MSFD and LZC were 
estimated for the 148 MEG channels. The results were 
averaged based on all the artefact-free epochs within the 
five-minute period of recording. In order to reduce the 
dimension of the results, the MEG channels were grouped in 
five brain areas (anterior, central, left lateral, posterior and 
right lateral). Normality of distribution was assessed with 
Kolmogorov-Smirnov test, whereas homoscedasticity was 
analyzed with Levene’s test. As the entropy and complexity 
results did not meet homoscedasticity assumption, Welch t-
test with Bonferroni’s correction was used for the statistical 
comparison between AD patients and control subjects. 

 In this study, we have used the SSE to quantify the 
distribution of spectral power in MEG time-series of 848 
samples. For SSE computation, it is not necessary to set any 
parameters. The average SSE value for the control group was 
5.00 ± 0.34 (mean ± SD), whereas it reached 4.73 ± 0.33 for 
the AD patients. Fig. (2) summarizes the average SSE values 
estimated for the patients with AD and the control subjects, 
for all the MEG channels. This figure and the following ones 
have been plotted using scripts developed with the software 
package MATLAB (version 7.0; Mathworks, Natick, MA). 
These results suggest an irregularity decrease, in terms of the 
flatness of the power spectrum, for AD patients. 
Additionally, differences between AD patients and elderly 
control subjects were statistically significant in anterior, 
central and both lateral regions (p < 0.05; Welch t-test with 
Bonferroni’s correction). Previous studies have shown an 
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increase of the EEG/MEG regularity in AD patients 
compared with control subjects using different kinds of 
spectral entropies [23, 24]. 

 ApEn algorithm was applied to all 148 MEG channels to 
measure the signal irregularity. Although both m and r are 
critical parameters in the performance of ApEn, there are no 
guidelines for optimizing their values. To avoid that noise 
may bias the ApEn estimation, r must be higher than most of 
the signal noise [34]. Nevertheless, for small r values, the 
entropy estimation might fail. Additionally, the accuracy and 
confidence of the ApEn estimation improve as the number of 
matches of length m and m + 1 increases. This can be 
achieved by choosing small m and large r. These guidelines 
lead to use r values between 0.1 and 0.25 times the SD of the 

time series and m values of 1 or 2 [34]. In this study, we 
have chosen m = 1 and r = 0.25 times the SD of the original 
time series. The average ApEn values for AD and control 
groups were 1.16 ± 0.21 and 1.31 ± 0.20 (mean ± SD), 
respectively. Our results showed that ApEn values were 
higher in the control group than in the AD group for all 
channels (Fig. 3), which suggests that AD is accompanied by 
a MEG regularity increase. The differences were statistically 
significant at central and both lateral areas (p < 0.05; Welch 
t-test with Bonferroni’s correction). 

 SampEn is an embedding entropy that provides 
information about how the MEG signal fluctuates with time 
by comparing the time series with a delayed version of itself 
[22]. SampEn is a metric derived from ApEn to reduce the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Average SSE values from MEGs in AD patients and control subjects for all channels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. (3). Average ApEn values from MEGs in AD patients and control subjects for all channels. 
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bias of the latter [41]. SampEn is less dependent of the signal 
length and shows more consistency on a broader range of r, 
m and N values than ApEn [41]. ApEn rules for optimizing r 
and m values are also applicable for this new family of 
statistics. Thus, SampEn analysis were performed with m = 1 
and r = 0.25 times the SD of the original time series. 
Average SampEn value was 1.19 ± 0.20 for the elderly 
control group while an average SampEn value of 1.05 ± 0.21 
was obtained in AD patients. Fig. (4) illustrates the mean 
values obtained for AD patients and controls. Differences 
between both subject groups were statistically significant 
only at central region (p < 0.05; Welch’s t-test with 
Bonferroni’s correction). In spite of the theoretical 
advantages of SampEn over ApEn, the last family of 
statisticas has showed a better performance for 
differentiating AD patients’ MEG from controls’ recordings. 
Our results are in agreement with previous research works 
that have applied embedding entropies to estimate the 
regularity of EEG/MEG recordings from AD patients. In 
EEG, ApEn values were significantly lower in AD patients at 
parietal electrodes [21]. With SampEn, Abásolo et al. [23] 
found significant differences at P3, P4, O1 and O2. These 
results were subsequently confirmed by MEG studies [18, 
20]. 

 In our study, both spectral and non-linear embedding 
entropies have reflected an irregularity decrease in AD. 
Several authors have attempted to demonstrate which type of 
measures (linear or non-linear) is better suited to analyse 
brain signals [58-60]. The main conclusion of these studies is 
that no method performs better than the others in all 
situations. For instance, Jelles et al. [59] applied a linear 
(coherence) and a non-linear (global D2) measure to AD 
patients’ EEGs to assess the functional connectivity in 
several frequency bands. They suggested that both measures 
may give similar results, although non-linear methods may 
provide a higher sensitivity than linear ones [59]. 
Additionally, previous AD studies showed that linear and 
non-linear methods could provide complementary 
information [20, 21, 61, 62]. In our study, SSE has shown a 

better performance for MEG classification in AD, as 
statistically significant differences were found with this 
spectral measure at more cerebral areas than with ApEn and 
SampEn.  

 MEG background activity in AD patients and elderly 
control subjects has been also examined with three 
complexity measures: HFD, MSFD, and LZC. To estimate 
the FD appropriately, stationary MEG epochs are necessary. 
To guarantee that the 5 s epochs remain stationary, Bendat 
and Piersol’s runs test [63], a general non-parametric test for 
weak or wide sense stationarity, was used. A complete 
description of this process can be found in [15]. Using this 
test, we found that 57.41% of the epochs were stationary. 
These epochs were selected for further analysis with HFD 
and MSFD and the remainders were discarded. After testing 
the stationarity of the recordings, the algorithms proposed by 
Higuchi [12] and by Maragos and Sun [13] were applied to 
estimate the FD of our MEG signals. The first algorithm 
showed higher FD values (1.83 ± 0.06 for AD group and 
1.88 ± 0.06 for the control group) than the second one (1.63 
± 0.08 in AD and 1.67 ± 0.07 for the controls). This 
difference in the mean values with both algorithms may be 
due to the fact that HFD is severely affected by the presence 
of noise in the recordings, producing a translation towards 
higher FD values [46, 47]. Figs. (5 and 6) illustrate this fact. 
Welch’s t-test was used to evaluate the statistical differences 
between the FD values for AD patients and control subjects. 
Higuchi’s algorithm seems to discriminate AD patients from 
controls better than MSFD. Significant differences were 
found at anterior, central, posterior and right lateral regions 
with HFD, whereas MSFD no revealed significant 
differences between the groups. The poor behaviour of 
MSFD to distinguish AD patients from controls may be due 
to an unsuitable choice of the parameter dmax or due to the 
fact that this measure is not able to extract useful information 
from MEG signals. In agreement with these results, Accardo 
et al. [46] compared HFD and MSFD concluding that the 
first one is more adequate for analyzing brain recordings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (4). Average SampEn values from MEGs in AD patients and control subjects for all channels. 
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Fig. (5). Average HFD values from MEGs in AD patients and control subjects for all channels. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Average MSFD values from MEGs in AD patients and control subjects for all channels. 

 LZC is a non-parametric method which measures the 
number of different substrings and the rate of their 
recurrence along the original time series [52]. In this study, a 
binary conversion was used for the coarse-grained process. 
Then, the number of different subsequences in the original 
binary sequence is counted. For this measure, 20 s artefact-
free epochs (3392 samples) were employed due to the fact 
that a previous study showed that the LZC values become 
stable for MEG signals longer than 3000 samples [17]. The 
average LZC value was 5.00 ± 0.34 for controls and 4.73 ± 
0.33 for AD patients. Fig. (7) shows the average values 
obtained for each group. The differences were statistically 
significant at the five analyzed brain regions. 

 During the last two decades, the complexity measure 
most used to study the brain activity in AD is D2, often 
accompanied by L1 [7-9, 62, 64-66]. D2 is considered to be a 
reflection of the complexity of the cortical dynamics 

underlying bran recordings. Thus, reduced D2 values of the 
EEG/MEG in AD patients indicate that brains injured by AD 
exhibit a decrease in complexity of the electromagnetic brain 
activity [5]. Besthorn et al. [67] suggested that this reduced 
complexity in AD may be associated with an increase in the 
proportion of lower-frequency component in the patients’ 
EEGs. The so-called L1 describes the divergence of 
trajectories starting at nearby initial states [7]. Previous 
studies showed that AD patients exhibit lower L1 values than 
control subjects [7, 65]. This decrease would indicate a drop 
in the flexibility of the brain to process the information [7]. 
Recent studies have confirmed this complexity decrease in 
AD with different kinds of complexity measures, as neural 
complexity [9], multiscale entropy [19], FD [15, 16] and 
LZC [17, 18, 20].  

 Finally, receiver operating characteristic (ROC) curves 
with a leave-one-out cross-validation procedure were used to 
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assess the ability of the six methods to classify AD patients 
and control subjects. A ROC curve summarizes the 
performance of a two-class classifier across the range of 
possible thresholds. It is a graphical representation of the 
trade-offs between sensitivity and specificity. Sensitivity is 
the true positive rate whereas specificity is equal to the true 
negative rate. Accuracy is the percentage of subjects (AD 
patients and controls) correctly recognized. The area under 
the ROC curve (AUC) can be interpreted as the probability 
that a randomly chosen AD patient has an entropy or 
complexity value lower than a control subject selected by 
chance. To simplify the analyses, the results of each method 
were averaged over all channels. The highest accuracy 
(77.42%) and AUC (0.7927) values were reached using SSE. 
Fig. (8) illustrates the ROC curves, whereas the sensitivity, 
specificity, accuracy, and AUC values obtained with each 
measure are displayed in Table 1. The information offered in 
this table suggests that SSE provided a better differentiation 
between both groups than the other parameters. 

 In previous MEG studies, entropy and complexity 
methods, together with ROC curves, have been used to 
distinguish AD patients from control subjects. For instance, 
an accuracy of 70.7% was obtained with LZC [20]. In the 
same study, the accuracy values achieved with SSE and 

ApEn were 70.7% and 51.2%, respectively [20]. With the 
auto-mutual information decrease rate, an accuracy of 82.9% 
was reached [68]. The highest accuracy in MEG complexity 
studies was achieved when mean HFD values were analyzed 
with a ROC curve (87.8%). This value also was obtained 
using two different kinds of spectral entropies [24]. The 
accuracies achieved in EEG studies on AD with complexity 
and entropy measures are the following: 81.8% using LZC 
[69], 77.3% with SampEn [23], 90.1% with multiscale 
entropy [19] and 69.5% using the classical measure D2 [64]. 
Nevertheless, all these values, both in EEG and MEG 
research works, should be taken with caution due to the 
small sample sizes. 

 Finally, it is important to note that all the methods 
applied in this study are much better suited for the analysis 
of biomedical recordings than techniques like D2 and L1, 
from a signal processing point of view. Whereas these 
traditionally-used methods require a large amount of noise-
free stationary data [10, 11], all the metrics applied in this 
study can be calculated from shorter time series. 
Additionally, ApEn, SampEn and LZC are very robust to 
noise and can be applied to both deterministic and stochastic 
time series [37, 41, 52].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Average LZC values from MEGs in AD patients and control subjects for all channels. 
 

Table 1. Sensitivity, Specificity, Accuracy, and AUC Values Obtained with Each Entropy and Complexity Method 

Method Sensitivity Specificity Accuracy AUC 

SSE 0.9167 0.5769 0.7742 0.7927 

ApEn 0.7500 0.5385 0.6613 0.7382 

SampEn 0.7778 0.5000 0.6613 0.7126 

HFD 0.7222 0.7308 0.7258 0.7911 

MSFD 0.8056 0.3077 0.5968 0.6400 

LZC 0.8056 0.6154 0.7258 0.7863 



MEG Analysis in Alzheimer The Open Biomedical Engineering Journal, 2010, Volume 4    233 

    a       b 

 

 

 

 

 

 

 

 

 

 

 

    c       d 

 

 

 

 

 

 

 

 

 

 

 

    e       f 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). ROC curves showing the discrimination between AD patients and controls with (a) SSE, (b) ApEn, (c) SampEn, (d) HFD, (e) MSFD, 
and (f) LZC.  

CONCLUSIONS 

 In sum, our study leads us to conclude that MEG 
background activity in AD patients are less complex and 
more regular than in elderly control subjects. The results 
obtained with five (SSE, ApEn, SampEn, HFD, and LZC) of 
the six employed measures showed significant differences 

between AD patients and controls at any of the cerebral 
regions, indicating an abnormal type of dynamics associated 
with AD. Although this complexity/irregularity reduction 
seems to be associated with the deficiencies in information 
processing suffered by AD patients, its pathophysiological 
implications are not clear. Among others, three mechanisms 
can be responsible for it: neuronal death, a general effect of 
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neurotransmitter deficiency, and connectivity loss of local 
neural networks [5]. 

 Our results indicate that entropy and complexity 
measures could be useful in AD diagnosis. Nevertheless, 
some limitations of our study merit consideration. (i) Firstly, 
the sample size is small to prove the usefulness of these 
measures as diagnostic tools. (ii) Moreover, the detected 
decrease in irregularity and complexity is not specific to AD, 
appearing in other brain disorders. (iii) Finally, the results 
obtained from each parameter were averaged to simplify the 
analyses, loosing the spatial information of the MEG signals. 
Future efforts will be focussed to increase the MEG 
database, as well as to extend the results to other 
neurodegenerative diseases. 
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