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Abstract: The FANFARE (Falls And Near Falls Assessment Research and Evaluation) project has developed a system to 

fulfill the need for a wearable device to collect data for fall and near-falls analysis. The system consists of a computer and 

a wireless sensor network to measure, display, and store fall related parameters such as postural activities and heart rate 

variability. Ease of use and low power are considered in the design. The system was built and tested successfully. Differ-

ent machine learning algorithms were applied to the stored data for fall and near-fall evaluation. Results indicate that the 

Naïve Bayes algorithm is the best choice, due to its fast model building and high accuracy in fall detection.  
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INTRODUCTION 

 Falls in the elderly present a major challenge for public 
health [1]. Falls not only cause disabling fractures but also 
has dramatic psychological consequences, which reduce the 
independence of a person. Fall can be described in a com-
mon sense as a rapid change from the upright/sitting position 
to the reclining or almost lengthened position in an uncon-
trolled movement. The postural stability of the movement is 
affected by complex internal neural and muscular models 
[2]. Older adults who have experienced frequent near fall 
events or repeated falls are typically assessed using a docu-
mentation method to determine fall risk, where fall events 
and the circumstances surrounding fall events are evaluated 
through questioning and self-report systems using question-
naires, fall diaries or phone calls. These documentation 
methods have advantages and disadvantages in terms of ac-
curacy, costs and time commitments [3]. One notable con-
cern to all the documentation methods are their associated 
problems of subjectivity. Due to the limited accuracy with 
respect to recall, the reported circumstances surrounding 
falls are often incomplete or inaccurate. In addition, falls are 
more than likely underreported through the documentation 
methods. Near-fall events are particularly difficult to deter-
mine, because often older adults do not recognize the events 
themselves or do not recognize the significance of the near-
fall events. On the other hand, fall risk factors are deter-
mined with physical examination, which includes evaluation 
of posture, balance, gait, visual acuity, sensation, vital signs, 
and activities of daily living. Although useful, a physical 
examination only evaluates the risk factors at one particular  
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point in time, and is based on a short period of observation. 
Suspected causes of falls or near-falls, such as cardiac ar-
rhythmias and changes in blood pressure, require further 
tests. Unfortunately, this causes delay in diagnosis. More 
importantly, the tests are conducted in isolation of each other 
and in isolation of multiple compounding factors that may be 
occurring during an actual near-fall or fall event. For exam-
ple, a change in blood pressure alone may not lead to a fall, 
but when combined with poor balance (detected as increased 
sway) may result in a fall.  

 Falls are multi-factorial in nature; therefore assessment 
and detection methods need to be multi-factorial. Numerous 
fall detection methods have been proposed in the past [4]. 
Newell [5] approached the fall detection with monitoring the 
change in the patterns of inactivity. Sixsmith [6] used an 
array of infrared detectors for fall monitoring. A method of 
evaluating the characteristics of postural transition (PT) and 
their correlation with falling risk in elderly people is de-
scribed in [7]. More recently, accelerometry has been seen as 
a practical, inexpensive and reliable method for the monitor-
ing of postural motion as well as for the detection and pre-
diction of falls. A wearable device featuring three mono-
axial accelerometers and three gyroscopes to assess fall risks 
is proposed in [8]. Lee [9] proposed an accelerometer sensor 
module and associated wireless sensor network to assess fall 
risks. Motivated by the need for more accurate fall and near-
fall detection in the medical community, this fall detection 
and data collection system is designed to capture physiologi-
cal activities of a patient for fall and near-fall analysis or 
monitoring. The collected data are extremely useful for 
medical personnel for pre-fall and post-fall analysis. The 
data can be used to determine the fall pattern of a patient. 
The system also provides real-time monitor on the elderly 
people for fall prevention. For instance, a combination of fall 
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parameters such as fall backward, forward, heart rate, etc. 
can be used for the prevention of future falls on that person 
by providing a fall warning signal. 

SYSTEM DESIGN 

 The fall detection and data collection system is shown in 
Fig. (1) which includes a networked computer, a wireless 
receiver connected to the computer and a wearable device 
which is worn by a patient. The wearable device is called a 
sensor node which houses the sensors and sends the fall re-
lated data wirelessly to the receiver.  

 

 

 

 

 

 

 

 

 

 

Fig. (1). The fall detection and data collection system consists of a 

network connected computer and a wireless sensor network com-

prising a coordinator and a sensor node. 

 

 The system detects falls by measuring, collecting, and 
analyzing fall parameters including postural sway in 3-D 
using a 3-axis acceleromter and a 2-axis gyroscope and a 
heart rate sensor. The on-board microcontroller with ZigBee 
ready communication protocol is used for controlling the 
sensors and also preprocessing collected data before sending 
it to the receiver. Different fall detection algorithms can be 
programmed into the wearable device to provide warning 
signal to the user to alert a possible fall in order to take fall 
prevention measures.  

Sensor Node on the Wearable Device 

 Fig. (2) provides a closer look at the wearable device. 
This device (i.e., a sensor node) comprises of a high preci-
sion acclerometer sensor (ST LIS3LV02DQ), a gyroscope 

(InvenSense IDG-300), a heart rate sensor, an RF-ready mi-
crocontroller (Jennic 5139-Z01) and a rechargeable battery 
mounted underneath the circuit board (not shown in the fig-
ure).  

 The LIS3LV02DQ is a three-axis, 12-bit digital output 
linear accelerometer that includes a sensing element and an 
I

2
C/SPI serial interface to take the acceleration information 

from the sensing element and to provide the measured accel-
eration signals to the external world. The sensor, operating 
on a 2.16V-3.6V supply, has a user selectable full scale of 
±2g or ±6g. The device may be configured to generate an 
inertial wake-up/free-fall interrupt signal when a program-
mable acceleration threshold is crossed at least in one of the 
three axes. This feature is very useful in this application be-
cause: a) the wearable device can save power by putting the 
sensor to sleep mode and b) the sensor can be programmed 
to detect a fall for a certain threshold to be determined by a 
particular individual after pre-fall analyses. 

 The dual-axis gyro is a MEMS device operating at a sin-
gle supply voltage of 3.0-3.5V. The sensor provides analog 
outputs of X and Y rates with a full scale of ±500

O
/sec. The 

output voltages of the rotations are connected to the onboard 
analog-to-digital (ADC) of the microcontroller/RF module. 
One of the disadvantages of the gyro is its output drifting 
due to the nature of the gyro. Further filtering is required to 
correct the error as a result. The sensor also consumes power 
continuously due to its long wake-up time. Both the acceler-
ometer and the gyro have very high shock survivability of at 
least 500g. The combination of accelerometer and gyroscope 
provides a better postural activity measurement as proved in 
the testing results.  

 The heart rate sensor circuit is based on the pulse 
plethysmograph (PPG) method. PPG is an optic signal re-
lated to the volumetric pulsations of blood in tissue, which in 
turn is related to heart beat. As shown in the circuit block 
diagram of Fig. (3), the circuit uses an infrared (IR) LED to 
send a light through an earlobe to an IR transistor. The di-
ode/transistor pair with appropriate bias voltage and current 
detects the blood flow through the earlobe. The amplification 
and filtering convert the small current flowing through the 
transistor into a heart beat signal. 

 

 

 

 

 

Fig. (3). Heart beat sensor block diagram.  

 

 JN5139 is a RF-ready microcontroller module made by 
Jennic [10]. This low-cost, off-the-self module has a micro-
controller and wireless communications in a single unit to 
provide the necessary resource to design a wireless sensor 
network with multiple sensor nodes using the ZigBee proto-
col. This module also includes a built-in ceramic antenna. 
One of the important features is that the unit can be put into 
the sleep mode which requires only 3μA of current to run the 
active sleep timer. Sleep mode is used extensively in this 
system to reduce power consumption of the sensor node 

 

 

 

 

 

 

 

 

 

 

Fig. (2). The wearable device. 

Coordinator

Gyroscope

Accelerometer

Heart Rate Wireless Microcontroller

PC

Wearable device

Heart beat 
measurement

Gyroscope

Microcontroller/
RF module 
with ceramic 
antenna

Accelerometer

LPF 

HPF + Gain

Bias 

HLC1395 
(diode + transistor)

LPF



In Vitro Generation of Cartilage-Carrier-Constructs The Open Biomedical Engineering Journal, 2009, Volume 3    3 

which is running on a rechargeable battery. The 32-bit RISC 
CPU in this module provides the ability to perform tasks 
such as processing data, controlling the SPI accelerometer, 
and performing ADC conversion of the heart rate sensor. 

The Coordinator for Receiving Data 

 JN5139 can also be programmed to perform the coordi-
nation function. As a coordinator, JN5139 can be connected 
to a ceramic antenna or an external antenna to extend the 
transmission range as shown in Fig. (4). The combination of 
ceramic antenna in the transmitter and external antenna at the 
receiver provides a tested transmission range of at least 15m 
with non-line-of-sight.  

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). The coordinator. 

 

 As shown in Fig. (1), the coordinator is the main control-
ler connected to a computer. The coordinator communicates 
directly to the sensor node. Through the coordinator, the 
computer receives physiological activity data sent by the 
wearable device. The computer is also used for storing data 
in CSV format for easy retrieval. The time stamped data can 
be retrieved and analyzed using any fall detection analyzing 
methods. One such method is the data classification using 
support vector machines described in [11]. An algorithm to 
detect the fall using acceleration data has developed by 
Hwang, et al. in [12] while Luo and Hu applied a 3D body 
motion model to represent acceleration vector in 3D space to 
detect the fall using a three stage dynamic process [13]. The 
computer also displays the X, Y and Z coordinates of the 
accelerometer, the X and Y axes of the gyroscope, as well as 
the heart beat signal for real time monitoring. 

THE SOFTWARE 

 This system is a hardware/software co-design in which 
the software must be programmed into the microcontroller in 
the Jennic module. Fig. (5a) and (5b) show the flow charts 
for the sensor node and for the coordinator, respectively. 
Upon startup, the sensor node initializes all the required sub-
systems and begins searching for a network (which is initial-
ized by the coordinator). When the sensor node finds a coor-
dinator, it will join the network, turn on the sensors, and be-
gin the main loop. The loop checks to ensure that the battery 
voltage is good, then reads the sensors and sends the data to 
the coordinator. The Jennic module then sleeps for 100ms, or 
until the next accelerometer data sample is ready, which 

takes 25ms for a sampling rate of 40samples/second. If the 
battery voltage is low, the module will turn off the sensors to 
save power, and emit a pulse with the buzzer alerting the 
user to recharge the battery. When the voltage drops to a 
level where there is a risk of damaging the Lithium Polymer 
cell, the sensor node will turn itself off and no longer trans-
mit data. On startup, the coordinator initializes itself and sets 
up the network. When a sensor joins, the coordinator will 
receive data from that sensor and forward it to the computer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Software flowchart (a) Sensor node and (b) Coordinator. 

 

SYSTEM TESTING 

 One of the wearable devices was trapped on the thorax of 
a healthy person to test the system functionalities including 
data storage, display and analysis. Fig. (6) shows an example 
of the data stored with time stamped. The sampling rate is 40 
samples per second. Data are continuously stored in a file in 
CSV format upon starting the system. In this sample, the first 
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column lists the time of the computer receives data from the 
coordinator. The next 3 columns contain X, Y, and Z values 
of the accelerometer. The fifth and sixth column have X and 
Y axis data from the gyroscope and the last column contains 
digital values of the heart beat signal. The physicians and 
researcher can mine the data for the required information. 
The size of the data file is determined by the data polling rate 
and the number of days to be observed, and users can name 
the file. 

 

 

 

 

 

 

 

 

 

Fig. (6). Data storage includes time stamped, accelerometer data 

(x,y,z), gyroscope data (x,y), and heart beat signal.  

 

 Fig. (7) is a screen captured of the display for the three-
axis accelerometer, the rotational data from the dual-axis 
gyros and the heart beat signal. The data display is for the 
random and sometime rigorous movements of the end de-
vice.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Sensor node display.  

 

 The sensor node is programmed to spend most of its time 
in sleep mode to conserve energy unless the data are trans-
mitted which draws a current of 30mA. Test results on a full-
charge battery showing the wearable device can properly 
operate for 70 hours. The gyroscope and the heart rate sensor 
must consume power continuously while the accelerometer 
can be put into sleep mode if desired. When the battery volt-

age falls below 2.1V, the gyroscope stops functioning while 
the other parts of the sensor node continue operating. 

FALL DETECTION ANALYSIS 

 Machine learning involves providing a training file to the 
learning algorithm in which the data are correctly classified. 
The machine then learns the patterns involved in the data and 
can automatically classify future situations. More accurate 
classification techniques ensure lesser number of false 
alarms and fewer undetected falls. Selection of a suitable 
classification algorithm is the first and the most important 
step in solving any classification problem. Since all classifi-
cation algorithms behave differently towards different type 
of data, depending upon the number of attributes and the 
nature of outliers among other factors, a comparison of dif-
ferent algorithms applied to a particular data set is useful in 
selecting the best algorithm for the task [14]. As will be de-
scribed below, this fall detection analysis applied five differ-
ent classification algorithms to accelerometer and gyroscope 
data collected from the designed fall assessment and evalua-
tion system.  

Data Collection 

 As described previously, the data for the study was col-
lected using the device shown in Fig. (1). The data consists 
of 3582 data items distributed in 597 rows and 6 columns. 
Three columns represent the acceleration in X, Y and Z axis. 
Two columns represent the data from Gyroscope in X and Y 
axis. The entire data set is used for the training purpose and 
10-fold cross validation technique is used to test the gener-
ated model. 

WEKA 

 Waikato Environment for Knowledge Analysis or in 
short WEKA [15] is used in this fall detection analysis. 
WEKA is a Java based data mining software developed at 
the University of Waikato, New Zealand and is available as a 
free software under GNU public license. It supports different 
data mining tasks such as data preprocessing, clustering, 
classification and regression. It is frequently used by re-
searchers because of its ease of use and open source envi-
ronment [14,16]. Graphical User Interfaces contained in the 
software make it easy to use and better visualize the data. 
The data is processed as an ARFF file. The tool is capable of 
reading data from a number of file formats like a CSV file or 
a SQL database and converts the data internally to the ARFF 
format [17]. 

Algorithms 

 WEKA consists of a number of machine learning algo-
rithms: Naïve Bayes, Radial Basis Function, Support Vector 
Machine, C4.5 and Ripple Down Rule Learner. 

1) Naive Bayes 

 Naive Bayes is a simple probabilistic classifier. It as-
sumes that every feature related to a class is independent of 
each other [18]. So the probability of occurrence of a class 
C, provided the features F1 through FN is 

=

=
N

j
jj CFPCCFFFCP

1
21 )|()()...,|(           (1) 
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 The classifier learns the conditional probability of each 
attribute from the training data. Classification is done by 
calculating the probability of C given the values of features 
F1 through FN and then predicting the class with the highest 
probability value. Though the independence assumption is 
far reaching and often inaccurate in real world data, this 
method performs surprisingly well for most of the classifica-
tion problems [19]. 

2) Radial Basis Function (RBF) 

 A radial basis function network is an artificial neural 
network which uses radial basis functions as activation func-
tions [20]. RBF networks typically have three layers. An 
input layer is a hidden layer with non linear RBF function 
and a linear output layer. The output  of the network for an 
input x is given by 

=

=
N

i
ii cxax

1

||)(||)(            (2) 

where ci is the center for neuron i and ai is the corresponding 
weight. A successful implementation of these networks re-
quires appropriate values of the center and the weights [18]. 

3) Support Vector Machine 

 Support Vector Machine is a class of linear classifiers 
that simultaneously minimize the empirical classification 
error and maximize the geometric margin. The process in-
volves creating a hyperplane in a n-dimensional space, that 
would separate two data sets with the highest margin [21]. 
Reaching such a hyperplane is essentially a solution of the 
following optimization problem: 

minimize 2||||
2

1
W  subject to 1)( bWxc ii         (3) 

where 1<i<n and W is the vector normal to hyperplane, b is 
the offset for vector W. 

4) C4.5 

 C4.5 is a type of decision tree that uses Shannon’s en-
tropy as a criterion for selecting the most discriminatory fea-
ture. 

=

=
c

i
ii ppSEntropy

1
2 )(log)(           (4) 

 The entire data set is split by using any one of the fea-
tures and the resultant information gain is measured. The 

process is repeated for every feature and the one with highest 
information gain is selected for splitting the data [18]. This 
becomes the first decision node of the tree and the process is 
repeated for every node until the final node or the leaves are 
reached. 

5) Ripple Down Rule Learner 

 Ripple Down Rule Learner is a type of machine learning 
algorithm that comes under the general class of rule learners. 
Like all rule learners, it induces a set of rules from the data. 
It generates the default rule first and then the exceptions for 
the default rule with the least (weighted) error rate. The 
process is repeated until the final leaf is reached which has 
only one default class and no exceptions [18]. 

RESULTS 

 To measure the accuracy of the machine learning algo-
rithms, same method is applied to all the five algorithms, i.e., 
the entire data set is used to train the algorithms and subse-
quently 10 fold cross validation method is used to test the 
generated classification models. In WEKA, every row of 
data is considered as an instance and the features in the data 
are known as attributes. Results of the simulation show dif-
ferent parameters such as correctly and incorrectly classified 
instances, mean absolute and root mean squared error, con-
fusion matrix etc.  

 Tables 1 and 2 summarize the results of the simulation 
based on accuracy and error. As is evident from the results 
shown in the tables, the Naive Bayes algorithm provides the 
best performance both in terms of accuracy and the time 
taken to build the model. It has an accuracy of 97.3% and the 
model was built almost instantaneously. The lowest accuracy 
of 92.3% was shown by the Support Vector Machine. This 
model also took the longest time to build, 14.16 seconds, as 
compared to an average time of 4.5 seconds for all the algo-
rithms in the experiment. The average accuracy turns out to 
be 94.5% with an average 564 correctly classified instances 
and 32 incorrectly classified instances, out of a total 597 
instances. Table 3 shows the confusion matrix for simulation 
results using Naive Bayes algorithm. All the instance be-
longing to the classes Forward Fall, Lying, Standing and 
Backward Fall have been correctly classified. The classes 
Walking, Right Fall and Left Fall had some of their instances 
misclassified as belonging to another class. In total there 
were 16 misclassified instances and 581 correctly classified 
instances. 

Table 1. Accuracy of Each Algorithms 

Algorithm 
Correctly Classified Instances % 

(value) 

Incorrectly Classified Instances 

% (value) 

Time taking to build model
1
  

(second) 

Naive Bayes  97.3 (581) 2.7 (16) 0.01 

Support Vector Machine 92.3 (551) 7.7 (46) 14.16 

Radial Basis Function 95.8 (572) 4.2 (25) 8.01 

C4.5  94.6 (565) 5.3 (32) 0.04 

Ripple Down Rule Learner 92.8 (554) 7.2 (43) 0.16 

1Using Intel CoreTM2 Duo 1.67GHz processor and 2GB RAM. 
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CONCLUSION 

 Testing results prove the system successfully senses, col-
lects and stores fall related data. Using low power devices 
and clever design increase battery life on the wearable de-
vice. The system provides accurate physiological activity 
data to the needs of physicians for fall and in particular pre-
fall analysis. The data base provides important information 
to analyze long-term trends and patterns needed in the pre-
vention of fall. Comparing to [12], this system uses less 
power partly because the former using Bluetooth protocol 
instead of ZigBee. This system is also more versatile as the 
data are stored for fall analysis. Comparison studies were 
carried out for five different machine learning algorithms 
using data collected from the designed system. Naïve Bayes 
algorithm generated the best results with an accuracy of 
97.3%. The result suggests that among the algorithms tested, 
Naïve Bayes has the potential to perform better classification 
for the type of data used. Real-time classification algorithm 
is important for the fall detection device to achieve improved 
accuracy of the fall detection, which deserves further re-
search. 
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NOMENCLATURE 

Accelerometer = a device for measuring acceleration and 
gravity induced reaction forces  

Gyroscope = a device for measuring or maintaining 
orientation, based on the principles of 
angular momentum

 

g = Earth gravity (9.8m/s
2
) 

FANFARE = Falls And Near Falls Assessment Re-
search and Evaluation project 

WEKA = Waikato Environment for Knowledge 
Analysis: a popular suite of machine 
learning software written in Java, devel-
oped at the University of Waikato, New 
Zealand  

ZigBee = a specification for a suite of high level 
communication protocols using small, 
low-power digital radios based on the 
IEEE 802.15.4-2006 standard for wire-
less personal area networks  
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