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Abstract: Theoretical modeling is a technique widely used to study the electrical-thermal performance of different surgi-

cal procedures based on tissue heating by use of radiofrequency (RF) currents. Most models employ a parabolic heat 

transfer equation (PHTE) based on Fourier’s theory, which assumes an infinite propagation speed of thermal energy. We 

recently proposed a one-dimensional model in which the electrical-thermal coupled problem was analytically solved by 

using a hyperbolic heat transfer equation (HHTE), i.e. by considering a non zero thermal relaxation time. In this study, we 

particularized this solution to three typical examples of RF heating of biological tissues: heating of the cornea for refrac-

tive surgery, cardiac ablation for eliminating arrhythmias, and hepatic ablation for destroying tumors. A comparison was 

made of the PHTE and HHTE solutions. The differences between their temperature profiles were found to be higher for 

lower times and shorter distances from the electrode surface. Our results therefore suggest that HHTE should be consid-

ered for RF heating of the cornea (which requires very small electrodes and a heating time of 0.6 s), and for rapid abla-

tions in cardiac tissue (less than 30 s). 

INTRODUCTION 

 Radiofrequency (RF) currents have been employed in 
many surgical and therapeutic procedures such as the elimi-
nation of cardiac arrhythmias and the destruction of tumors. 
Theoretical modeling has been widely used to investigate 
and develop new techniques of RF heating (RFH) in biologi-
cal tissue and to study in depth the electrical and thermal 
phenomena involved in the process [1]. To date, all theoreti-
cal models have employed a heat transfer equation in which 
the heat conduction term was based on Fourier’s theory, and 
hence related to heat flux ( q ) in the following way: 

),(),( trTktrq =            (1) 

where k is the thermal conductivity and ),( trT  the tempera-
ture at point r  at time t. As a result, a parabolic heat transfer 
equation (PHTE) was employed as the governing equation. 
Fourier’s theory assumes an infinite thermal energy propaga-
tion speed, i.e. any local temperature disturbance causes an 
instantaneous perturbation in the temperature at each point in 
the medium [2]. Although this approach might be suitable 
for most RFH procedures, it has been suggested that under 
certain conditions (such as very short duration heating em-
ployed in RF heating of the cornea [3]), a non-Fourier model 
should be considered in the form of the hyperbolic heat 
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transfer equation (HHTE), i.e. considering a thermal relaxa-
tion time ( ) for the tissue 0 [2]. As it is known that heat is 
always found to propagate at a finite speed [4], Cattaneo [5] 
and Vernotte [6] simultaneously suggested a modified heat 
flux model in the form: 

),(),( trTktrq =+            (2) 

where  is the thermal relaxation time of the biological tis-
sue. This equation assumes that the effect (heat flux) and the 
cause (temperature gradient) occur at different times and that 
the delay between heat flux and temperature gradient is  [4]. 
The particular case of considering  = 0 obviously corre-
sponds to the Fourier theory. 

 In order to make a theoretical study of the differences in 
the temperature profiles obtained from both equations in a 
general case of RFH, we recently built a one-dimensional 
model in which the electrical-thermal coupled problem was 
analytically solved by using both PHTE and HHTE [7]. In 
this study, in order to precisely quantify the differences be-
tween both equations, we particularized that analytical solu-
tion to three typical examples of RFH: heating of the cornea 
for refractive surgery, cardiac ablation for eliminating ar-
rhythmias, and hepatic ablation for destroying tumors. 

ANALYTICAL MODEL  

 Model geometry similar to those proposed by Erez and 
Shitzer [8] was considered. Briefly, we modeled a r0 radius 
spherical electrode completely imbedded in and in close con-
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tact with the biological tissue (see Fig. 1), which had an infi-
nite dimension.  

 

 

 

 

 

 

 

 

 

 

Fig. (1). Schematic diagram of the model geometry. A spherical 

electrode (grey circle) of radius r0 is completely imbedded and in 

close contact with the biological tissue, which has an infinite di-

mension. As a result, the model presented a radial symmetry, and a 

one-dimensional approach is possible (dimensional variable is r). 

 

 The model thus presented radial symmetry and a one-
dimensional approach was possible. Regarding the electrical 
problem, the source term for the RFH modeling (i.e. the 
Joule heat produced per unit volume of tissue, Q(r,t)) can be 
expressed as: 
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where P is the total applied power (W), r0 the electrode ra-
dius, and H(t) is the Heaviside function. Here we are model-
ing a protocol of constant power step at t=0. We then consid-
ered Özi ik and Tzou’s heat transfer model [9]: 
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which combined with the energy equation: 
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where  is the density and c the specific heat, allows to ob-
tain: 

)
),(

),((
1

)
),(),(

(
1

),(
2

2

t

trQ
trQ

k

t

trT

t

trT
trT

+

=++

         (6) 

where  is the thermal diffusivity. 

 Finally, we combined (3) and (6), and we obtained the 
governing equation (HHTE) for the hyperbolic case: 
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where (t) is Dirac’s function. To write the boundary condi-
tion in r = r0 we adopted a simplification assuming the ther-
mal conductivity of the electrode to be much larger than that 
of the tissue (i.e. assuming that the boundary condition at the 
interface between electrode and tissue is mainly governed by 
the thermal inertia of the electrode) [8]. This condition was 
also matched to the hyperbolic heat flux. More details on 
boundary and initial conditions can be found in [7]. The 
PHTE case was also solved and the solution was equivalent 
to those found by Erez and Shitzer [8]. 

ANALYTICAL SOLUTIONS APPLIED TO RF HEAT-
ING CASES  

 Once the two analytical solutions had been obtained by 
HHTE and PHTE, they were applied in a theoretical study of 
temperature distributions in three types of biological tissues: 
cornea, heart and liver. Electrical and thermal characteristics 
of these tissues are shown in Table 1 [3,10,11].  

 There is a lack of experimental data at the present time 
regarding the tissue thermal relaxation time (t). For cardiac 
and hepatic tissue we considered a value of  = 16 s (which 
has been measured in processed meat [12]). Values ranging 
from 10 to 50 s have been found for non-homogeneous inner 
structure materials [13], suggesting that non-homogeneity 
might involve a higher value of .  

 Since the cornea has a more homogeneous inner structure 
than these tissues, we considered the lower value of  = 0.1 s 
for it. This is obviously a first approximation and experimen-
tal data obtained from further studies could give different 
results.  

 Regarding the active electrode, even though a stainless 
steel active electrode is used in various RFH procedures, in 
this study we only employed an active electrode made of 
platinum-iridium, as used in RF cardiac ablation. The char-
acteristics of this electrode were: density 21.5 10

3
 kg/m

3
, 

specific heat 132 J/kg K, and thermal conductivity 71 
W/m K [14]. In the three experimental cases, applied power 
was selected to maintain the maximal temperature in the 
tissue below 120ºC. Consequently, the power level finally 
employed was not comparable to those employed clinically, 
but this was not considered to be important in the context of 
this study. 

Table 1. Characteristics of the Tissues Used in the Modeling Study ( : Density; c: Specific Heat; k: Thermal Conductivity) 

Tissue  (kg/m
3
) c (J/kg K) k (W/m K) Reference 

Cornea 1060 3830 0.556 [3] 

Heart 1200 3200 0.70 [10] 

Liver 1060 3600 0.502 [11] 
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RF HEATING OF THE CORNEA  

 Firstly, we considered the case of conductive kerato-
plasty (CK), in which a small active electrode is inserted into 
the cornea and a small amount of energy is delivered to the 
corneal stroma (less than 600 mW for 600 ms) [3]. As the 
geometry of the active electrode considered in this study (i.e. 
spherical electrode totally embedded in the tissue) is not the 
same as the penetrating electrode clinically employed in CK, 
we chose different parameters: electrode radius 45 μm, and 
30 mW constant power applied for 600 ms. The initial tem-
perature was assumed to be 35ºC [3]. Fig. (2) shows the 
temperature distributions along the radial axis for different 
times from 10 ms to 600 ms for the two heat transfer equa-
tions. For shorter times (Fig. 2A), the HHTE produced tem-
peratures higher than the PHTE. However, this trend became 
negligible for a longer time t = 600 ms, when both equations 
gave similar temperatures (see Fig. 2B). This phenomenon 
can also be observed in Fig. (3), which plots temperature 
progress at three locations. As can be seen from this figure, 
at the beginning of heating, the rate of temperature change 
with HHTE was faster than PHTE and differences became 
small for longer times. The most remarkable characteristic of 
the HHTE analytical solution was the presence of cuspidal 

type singularities. This was materialized as a temperature 
peak which traveled through the medium at the finite speed 
of 1.25 mm/s (see Fig. 2A). 

RF CARDIAC ABLATION  

 Secondly, we modeled an RF cardiac ablation. In this 
case, we considered an electrode radius of 1.5 mm, and a 
power of 3 W for 120 s. The initial temperature was assumed 
to be 37ºC. Fig. (4) shows the temperature distributions 
along the radial axis for times from 5 s to 120 s for the two 
heat transfer equations. The differences in both solutions 
were considerable at the beginning of heating, especially for 
t  30 s (see also Fig. 5). 

 Once more, in the initial stages HHTE produced higher 
temperatures than PHTE. Likewise, the presence of cuspidal 
type singularities from the HHTE were also observed in the 
case of cardiac ablation as a temperature peak which traveled 
through the medium at the finite speed of 0.1 mm/s (see 
Fig. 4A). 

RF ABLATION OF LIVER 

 Finally, we modeled the RF liver ablation without blood 
perfusion (typically found in ex vivo experiments). In this 
case, we considered an electrode radius of 1.5 mm and 
power of 1 W for 720 s. Initial temperature was assumed to 
be 37ºC. Fig. (6) shows the temperature distributions along 
the radial axis for five different times (60, 120, 240, 360 and 
720 s) for both heat transfer equations. In this third case, 
which involved longer times, the differences between the 
equations were almost negligible. Temperature peaks associ-
ated with the cuspidal type singularities from the HHTE 
were only observed for shorter times (see Fig. 7). 

DISCUSSION 

 Our indirect objective was to assess the suitability of 
HHTE for RFH modeling by comparing it to PHTE. For this 
reason we built a simple geometry model and solved both 
equations analytically, employing the PHTE model proposed 
by Erez and Shitzer [8]. We then modified it to include finite 
thermal propagation speed and calculated the transit-time 
solution. Finally, we particularized both solutions (HHTE 
and PHTE) to three RFH examples and compared the results 
in each case. 

 

 

 

 

 

 

 

Fig. (2). Temperature distributions during RF heating of the cornea along radial axis for different times (from 10 ms to 600 ms) and for the 

Fourier heat transfer equation (dashed line) and hyperbolic heat transfer equation (solid line). Electrode radius 45 μm. Applied power 30 

mW. Thermal relaxation time of the cornea 0.1 s. 

 

 

 

 

 

 

 

 

 

Fig. (3). Temperature evolution during RF heating of the cornea 

(600 ms) at three locations: on the electrode surface, and at 15 μm 

and 55 μm from the electrode surface. Electrode radius 45 μm. 

Applied power 30 mW. Thermal relaxation time of the cornea 0.1 

s. Fourier heat transfer equation with dashed line, and hyperbolic 

heat transfer equation with solid line. 
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Fig. (4). Temperature distributions during RF heating of the heart along radial axis for different times (from 5 s to 120 s) and for the Fourier 

heat transfer equation (dashed line) and hyperbolic heat transfer equation (solid line). Electrode radius 1.5 mm. Applied power 3 W. Thermal 

relaxation time of the cardiac tissue 16 s. 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Temperature evolution during RF heating of the heart (first 

20 s) at three locations: on the electrode surface, and at 0.5 mm and 

1.0 mm from the electrode surface. Electrode radius 1.5 mm. Ap-

plied power 3 W. Thermal relaxation time of the cardiac tissue 16 s. 

Fourier heat transfer equation with dashed line, and hyperbolic heat 

transfer equation with solid line. 

 
 

 

 

 

 

 

 

 

 

 

Fig. (6). Temperature distributions during RF heating of the hepatic 

tissue along radial axis for different times (from 60 s to 720 s) and 

for the Fourier heat transfer equation (dashed line) and hyperbolic 

heat transfer equation (solid line). Electrode radius 1.5 mm. Ap-

plied power 1 W. Thermal relaxation time of the hepatic tissue 16 s. 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Temperature evolution during RF heating of the liver (first 

60 s) at three locations: on the electrode surface, and at 0.5 mm and 

1.0 mm from the electrode surface. Electrode radius 1.5 mm. Ap-

plied power 3 W. Thermal relaxation time of the hepatic tissue 16 s. 

Fourier heat transfer equation with dashed line, and hyperbolic heat 

transfer equation with solid line. 

 
 In all three cases we observed similar behavior in the 
results, which allows us to discuss them jointly. On one hand 
we observed that at the beginning of the heating (i.e. when 
the considered time was comparable to or shorter than ther-
mal relaxation time), PHTE provided temperature values 
lower than those provided by HHTE (see Figs. 2A, 3, 4A, 5 
and 7). This is in agreement with the results obtained by 
Banerjee et al. [15] in a modeling study of laser ablation 
with pulsed heating. Similar behavior was also partially ob-
served in a modeling study comparing a non-Fourier heat 
conduction model to the Fourier heat conduction model [16]. 

 On the other hand, the temperature evolution in HHTE 
was delayed compared to PHTE. In our study this delay was 
small and only apparent in some plots of Figs. (3, 5 and 7). 
This phenomenon has also been observed in other modeling 
studies on tissue heating and can be explained by the fact 
that when using HHTE, a period of time is needed for the 
heat to travel to a particular location in the tissue [2]. Once 
the thermal wave has traveled to a particular point in the 
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tissue, its temperature can even increase above the value 
predicted by PHTE [2]. We also observed that temperatures 
computed both from HHTE and PHTE were similar for 
longer times, as has previously been observed in other mod-
eling studies [2]. 

 Regarding the temperature peaks shown in Figs. (2A and 
4A), it can be checked that they traveled at speeds of 1.25 
mm/s and 0.1 mm/s respectively. These correspond ap-
proximately with the finite propagation speeds of the thermal 
wave (v) for cornea and cardiac tissue respectively, obtained 
from the following formula [15]: 

=
c

k
v             (8) 

 However, this is not surprising since the mathematical 

solution of HHTE [17] showed the relation between the time 

and location of the temperature peaks (i.e. )( 0rrt = ), 

which is implicitly contained in equation (8). 

 To date, different aspects of the hyperbolic heat transfer 
equation have been proposed and studied. For example, more 
general versions using two relaxation parameters, one for the 
heat flux (coincident with our constant ) and another for the 
temperature gradient have been considered [18-21]. How-
ever, as far as we know, this framework had not been previ-
ously applied to model RF heating. 

LIMITATIONS OF THE STUDY  

 This modeling study has several limitations which should 
be pointed out. Firstly, the geometry of our model (spherical 
electrode totally imbedded in a homogeneous biological tis-
sue with infinite dimension) is very simple compared not 
only to the realistic geometry of the electrodes employed in 
clinical practice (semispherical or needle-shape), but also to 
the heterogeneity of different types of tissue. However, it is 
necessary to point out that the main purpose of this study 
was to particularize an analytical solution of HHTE in RFH 
modeling for three examples of RFH applications. We there-
fore think that the differences found in this study between 
both heat transfer equations might be even higher if more 
realistic electrode geometries were considered (since elec-
trodes with a sharper tip might involve higher temperature 
gradients). Further modeling studies considering realistic 
geometries for the active electrodes and obviously based on 
numerical methods could assess this hypothesis. 

 Since we employed a constant-power protocol, we did 
not consider changes in electrical conductivity ( ) of the 
tissue with temperature (which would be important in con-
stant-voltage or constant-current protocols). We think that 
the differences found in our study between the two heat 
transfer equations might be even higher if this thermal de-
pendence were to be taken into account, especially by apply-
ing a constant voltage protocol. We support the hypothesis 
on the well-known effect of thermal feedback in electrosur-
gical heating [22]. Briefly, when tissue is heated with an 
electrical protocol based on a constant applied voltage, the 
tissue’s electrical resistance declines. Then, more current is 
delivered from the RF generator and tissue temperature in-
creases, thus creating a positive feedback loop. 

 Finally, future studies should take the tissue damage 
process into account, using for instance a first order kinetics 
model rather than a single temperature value [1]. In relation 
to this, it is necessary to point out that although temperature 
values from the PHTE and HHTE become similar for longer 
times, we found considerable differences at the beginning of 
the heating. For this reason, since a tissue damage function 
characterizes the total thermal dose throughout heating, its 
use might offer larger differences between the equations.  

 Consequently, we think that future studies on numerical 
RFH modeling, including realistic electrode geometries, 
changes in electrical conductivity with temperature and a 
tissue damage function will provide greater differences be-
tween the solutions obtained. 

 In addition, even though under certain circumstances the 
difference between the temperatures obtained from the two 
equations were sizable, it is necessary to emphasize that in 
the simulations we had to assume values for the tissue ther-
mal relaxation times due to the lack of experimental data. In 
spite of these limitations, we believe that this study is the 
first step in the development of theoretical models for RFH 
which include the hyperbolic heat transfer equation and 
hence are able to provide more accurate RFH modeling. The 
following section calls attention to some ideas for future 
work in this area. 

FUTURE RESEARCH  

 As we have mentioned, the analytical solution obtained 
for the simple geometry model presented in this study will 
allow us to validate other numerical models based on, for 
instance, the finite element method. However, future studies 
could be conducted using the one-dimensional model pre-
sented here. To be more precise, we are interested in model-
ing not only the heating phase but also the cooling phase (i.e. 
the period when no electrical power is applied) [8]. We 
therefore consider that it will be possible to produce more 
accurate models of some thermal phenomena that occur dur-
ing RFH, such as thermal latency [23]. This same solution 
could also allow us study the different results given by 
PHTE and HHTE when a train of very short pulses is used. 
For instance, in conductive keratoplasty (CK) a sequence of 
4800 brief pulses of 50 μs are applied. By taking into ac-
count our first findings (see Fig. 2), we think that the differ-
ences between the two equations could be higher in the case 
of pulsed power due to the accumulated differences (pulse 
by pulse) between the temperatures obtained from each heat 
transfer equation. In fact, the hyperbolic heat transfer equa-
tion has been specially employed for heating techniques 
based on short energy pulses [15,16]. Finally, future experi-
mental work should be conducted to accurately measure the 
thermal relaxation time ( ) of different biological tissues 
under different conditions. This could mean significant 
changes in some of the results of our study related to specific 
RFH cases. 

CONCLUSIONS  

 From a mathematical point of view, the HHTE solution 
has cuspidal type singularities which reflect the wave nature 
of the thermal problem. At the beginning of the heating (i.e. 
when the considered time was comparable to or shorter than 
the thermal relaxation time) PHTE provided temperature 
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values lower than those from HHTE. The HHTE temperature 
evolution was delayed compared to those from PHTE due to 
the fact that heat needs a period of time to travel to a particu-
lar location inside the tissue. 

 The differences between PHTE and HHTE temperature 
profiles were greater for lower times and shorter distances. 
For this reason, our results suggest that the HHTE should be 
considered in the case of RF heating of the cornea (heating 
time 0.6 s), and for short time ablation in cardiac tissue (less 
than 30 s). 
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