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Abstract:

Background:  Post-traumatic  stress  disorder  (PTSD)  is  caused  by  depression  and  stress  affecting  the  brain's
emotional, memory, and sensory processes.

Materials and Methods: This study investigates a stacked deep learning model for trauma-based PTSD disorder
diagnosis using rs-fMRI scans. Twenty-eight individual subjects, fourteen PTSD, and fourteen healthy controls were
used, and each subject had 140 Resting-State Functional MRI (rs-fMRI) scans. The selected subjects were assessed to
obtain brain activation from twelve brain regions of interest.

Results:  The  boxplot  was  used  to  check  the  performance  of  twelve  ROI  brain  regions.  Different  deep  learning
algorithms were used for classification through a 10-fold cross-validation approach. This study examines the efficacy
of employing a stacked deep approach with two models in the realm of predictive modeling.

Discussion: The objective of the proposed tacking model is to enhance the overall prediction accuracy and durability
by using the complementary attributes of each model. The stacked model achieved a 98.30% accuracy rate on the
training dataset and 96.60% on the test dataset.

Conclusion: Using the proposed approach, we could detect PTSD at an early stage. The selected ROI regions could
also  discriminate  healthy  PTSD  from  infected  regions  due  to  trauma  events  such  as  violence,  accidents,  and
terrorism.
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disabilities,  Health  risks.
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1. INTRODUCTION
PTSD is a brain disorder that occurs due to traumatic

events. There could be different types of traumatic events
in an individual’s life. A person can face traumatic events
due  to  sexual  abuse,  war,  domestic  violence,  school
violence,  severe  accidents,  terrorist  attacks,  etc.,  that
could  continually  remind  the  traumatic  events.  For
example, traumatized children may develop mental health
issues  such  as  depression,  anxiety  disorders,  post-
traumatic  stress  disorder,  disruptive  behavior  disorders,
obsessive-compulsive  disorders,  and insomnia [1-3].  It  is
also  directly  associated  with  fear,  mental  health,  and
cognitive disabilities. COVID-19 is also a traumatic event
that  distressed  millions  of  people's  mental  health.
COVID-19  is  considered  a  big  traumatic  event  of  the
current decade. It also lead to PTSD disorder in humans
because  traumatic  events  eventually  lead  to  PTSD
disorder. There are many sources that physicians utilize to
check  brain  disorders,  such  as  CT  (computerized
tomography)  scans  of  the  brain,  PET  (Positron  Emission
tomography)  scans,  MRI  (Magnetic  Resonance  Imaging)
scans, and fMRI (functional Magnetic Resonance Imaging)
scans. These scans can help diagnose the brain disorder,
the stage, and the relationship between the brain regions.
The fMRI scan type is the best solution to collect or detect
the brain activation pattern or activations, such as voxel-
wise or region-wise, during PTSD diagnostics [4, 5]. fMRI
tracked individuals' brain activity by tracking the changes
in cerebral blood oxygenation. It is used for brain regions
localizing  in  cognitive  tasks  due  to  its  high  spatial
resolution.  It  is  also  used  to  identify  the  neural
mechanisms  of  the  brain  while  different  activities  and
mental activities are mediated by the brain [6]. The fMRI
also allows the assessment of brain function recovery and
guides personalized training in different situations such as
traumatic  brain  injury,  rehabilitation  of  stroke,  and
neurodegenerative  disease.

Similarly,  it  provides  non-invasiveness,  repeatability,
whole-brain imaging, and a relatively balanced spatial and
temporal resolution [7]. The rs-fMRI scans are useful for
measuring the relationship between the brain regions and
mental  status  [8].  We  used  rs-fMRI  scans  to  obtain  the
brain  activation  pattern  of  PTSD  and  healthy  control
subjects.  Furthermore,  using  the  rs-fMRI  scans,  we
observed the activation pattern in PTSD subjects'  brains
and healthy control subjects using the most affected brain
regions.  Literature  reports  that  PTSD  affects  the
hippocampus (HC), Medial frontal cortex (MedFC), insula
(INS),  Para-hippocampus  (PHC),  Amygdala  (AM),
thalamus,  anterior  cingulate  cortex,  precuneus  brain.
However, these brain regions are not affected equally in
PTSD  patients  because  the  infection  or  intensity  level
varies  from  region  to  region  in  PTSD  subjects.

1.1. Research Hypothesis
This  research  aims  to  ascertain  whether  the

implementation of stacking, which is a learning technique,
can  enhance  the  precision  of  predictions  in  a  stacked
model.  It  is  thought  that  different  learning  methods  can

work better together when multiple two models are added
to  a  stacking  framework.  This  makes  the  system  more
accurate and resilient while still  handling deep, complex
connections  in  the  dataset.  Stacking  is  the  process  of
training numerous fundamental  models  and employing a
meta-learner  to  determine  the  optimal  combinations  of
their  predictions.

As  suggested,  using  methods  might  help  fix  the
problems with single models, especially when dealing with
data  that  shows  complicated  or  non-linear  trends.
Moreover,  by  integrating  numerous  models,  stacking
potentially offers a more refined and adaptable methodo-
logy for addressing classification challenges. The objective
of  this  empirical  study  is  to  ascertain  whether  stacking
with layering exhibits superior performance compared to
independent  models.  This  will  provide  insight  into  the
efficacy  of  methodologies  when  applied  to  predictive
modeling.  The  theory  could  help  classification  methods
move forward by providing a useful  and complex way to
make the model more accurate and useful in a wide range
of real-life situations if it is true.

Further,  this  research  is  divided  into  four  main
sections.  Section  2  presents  the  research  background,
objectives  of  this  research,  and  main  contributions.
Section 3 details the proposed methodology, and section 4
presents results, analysis, and comparisons of the recent
discoveries in the field. Lastly, section 5 summarizes the
research.

2. BACKGROUND
Literature reports several studies that have employed

fMRI  data  using  conventional  methods  to  identify  the
existence of PTSD. However, they have not achieved high
accuracy rates. Therefore, the first objective of this study
is to determine the brain activation performance level of
PTSD  in  healthy  control  subjects  using  the  rs-fMRI
dataset. Comparing the activation will help determine the
performance  level  or  severity  of  the  PTSD  disorder  in
brain  regions  [9].  The  Hippocampus,  Para-hippocampus,
Medial  frontal  cortex,  and  insula  exhibited  decreased
activation patterns in PTSD compared to healthy control
subjects.  The  reduced  activation  means  that  the  oxygen
level  decreases  in  regions,  which  decreases  the  perfor-
mance level of brain activity. PTSD disorder is caused by
depression and stress, affects the emotional and memory
process,  and  disturbs  the  sensory  and  motor  signal
transmission  process  to  the  cerebral  and  behavioral
effects  [10].

Based  on  the  literature  reviewed,  we  observed  that
HC,  PaHC,  MPFC,  and  INS  had  decreased  activation
patterns  in  PTSD  than  healthy  control  subjects.  In
contrast, an increased activation pattern was reported in
the  thalamus  and  AM  brain  regions  [11].  Similarly,  the
precuneus, inferior parietal cortex, and anterior cingulate
cortex  were  the  brain  regions  that  showed  a  decreased
activation pattern in PTSD subjects than in healthy control
subjects.  The  amygdala  includes  information  about
depression  and  emotions,  and  the  insula  consists  of
emotional  processing.  The hippocampus and Para-hippo-
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campus  control  the  memory  process.  The  precuneus
provides  mental  representation  for  the  event,  and  the
thalamus  transmits  sensory  and  motor  signals  to  the
cerebral  system  [12,  13].  The  MedFC  controls  the
behavioral  effects  and  stress.  These  are  all  activity
processes controlled by HC, PHC, AM, INS, and MedFC.
These  activity  performances  affect  PTSD  disease  due  to
PTSD disorder more than healthy control subjects. In this
research,  we  focused  on  six  brain  regions,  such  as  the
hippocampus,  Medial  prefrontal  cortex,  insula,  Para-
hippocampus,  Amygdala,  and  thalamus,  to  observe  the
activation pattern and classify the brain regions related to
PTSD and healthy control subjects. The classification rate
to diagnose PTSD patients from healthy control  subjects
was not observed precisely in the reported state of the art.
Therefore, it is challenging for researchers and surgeons
to differentiate brain activation between PTSD and healthy
control  subjects  precisely.  In  other  words,  brain  regions
show negative activation or decreased, and brain regions
show  a  positive  activation  or  an  increased  activation
pattern in PTSD disease than healthy control subjects [14,
15].

PTSD patients were diagnosed using pretreatment and
posttreatment scans with 72.5% accuracy using a Support
Vector Machine (SVM) [16]. A deep belief network model
was created, and a transfer learning technique was used
to  compare  with  SVM,  and  PTSD  detection  accuracies
were attained at  61.53 percent,  74.9 percent,  and 57.68
percent, respectively [17]. Different deep learning models
were  applied  to  identify  post‐traumatic  stress  disorder
from rs-fMRI. They reported the highest accuracy attained
by  KNN  and  SVM  with  radial  base  function  [18].  The
brain-sensitive  areas  in  the  right,  left,  and  both
hemispheres identified post‐traumatic stress disorder from
rs-fMRI  using  three  ANN  models  and  attained  a
classification accuracy of 79%, 93.5%, and 94.5% for each
model [19]. The correlation and pre-whitened rs-fMRI data
were  used  to  identify  PTSD  patients  and  reported  a
sensitivity and specificity of 93.3% and 95.5%, respectively
[20].

The 20 PTSD and 20 HC subjects were used with their
rs-fMRI  dataset  for  the  classification  process.  The  SVM
model  obtained  a  92.50% accuracy  rate,  90% sensitivity
rate, and 95% specificity rate [21]. Similarly, the SVM +
deep learning model was used to assess the accuracy rate
between  91  PTSD  subjects  and  126  healthy  control
subjects using the rs-fMRI dataset.The model achieved an
80%  accuracy  rate  of  classification  with  an  80.9%
sensitivity rate and a 79.2% specificity rate [22]. Similarly,
the  relevance  vector  machine  model  was  also  used  to
access the accuracy rate of 57 PTSD subjects and 59 HC
subjects using the rs-fMRI dataset. The model achieved an
89% accuracy rate of classification, 86.5% sensitivity rate
and 92% specificity rate [23].

Furthermore, to assess the effectiveness of the models,
a  combination  of  VGG16  and  EfficientNet  was  used  to
diagnose  Alzheimer's  disease  on  both  balanced  and
imbalanced datasets.  A composite model  was created by
amalgamating  the  forecasts  of  many  models;  this  model

extracteddetailed  and  subtle  patterns  from  the  data.  A
model was created by concatenating the output and input
of both models. This model was then enhanced by adding
more  layers  to  improve  its  robustness.  In  this  research
attempt, we included a combination of EfficientNet-B2 and
VGG-16 to enhance the detection of diseases in their early
stages.  The  studies  made  use  of  two  datasets  that  were
available to the public. The experimental results showed
that the proposed approach obtained a 97.35% accuracy
and a 99.64% area under the curve (AUC) for multiclass
datasets.  For  binary-class  datasets,  the  accuracy  was
97.09% and the AUC was 99.59%. The suggested solution
demonstrated  significant  efficacy  compared  to  previous
methodologies  and  achieved  excellent  performance  on
both  datasets  [24].

PTSD  is  predominantly  treated  with  psychotherapy
owing to its notable efficacy, nevertheless, medication may
be employed singly or in combination with psychotherapy.
Furthermore, to reduce the incidence and consequences of
the condition, multilevel preventive strategies have been
developed to detect the issue during its initial phases and
alleviate the adverse health effects on individuals who are
already afflicted. While clinical criteria are commonly used
for  diagnosis,  there  is  an  increasing  emphasis  on
identifying reliable biomarkers that can potentially aid in
prognosis,  diagnosis,  or  evaluate  treatment  efficacy.
Numerous  potential  biomarkers  have  been  linked  to
pathophysiological changes associated with PTSD, which
has  prompted  further  research  to  identify  actionable
targets  [14].

The  first  objective  of  this  study  was  to  identify  the
brain region performance of twelve selected ROI of Post-
Traumatic  Stress  Disorder  (PTSD)  and  healthy  control
subjects using their  rs-fMRI scans.  The second objective
was to build a stacked model to identify the PTSD subjects
from healthy control using rs-fMRI scans.

2.1. Objectives of Study
The first objective of this study was to identify which

brain region was the most affected by PTSD compared to
healthy  control  subjects  using  their  rs-fMRI  scans.  We
studied  the  thalamus,  Insula  (INS),  Hippocampus  (HC),
Amygdala  (AM),  Para  hippocampus  (PaHC),  and  medial
frontal  cortex  (MedFC)  brain  regions  with  both  hemi-
spheres  of  the  PTSD  and  healthy  control  subjects  were
used  as  regions  of  interest  (ROI)  shown  in  Fig.  (1).  The
ROI-based  region  performance  checked  which  brain
region shows increased /decreased activation patterns in
PTSD subjects than healthy control subjects.

The  second  objective  of  this  study  was  to  develop  a
prediction  model  to  classify  PTSD subjects  from healthy
control  subjects.  In  this  experiment,  we  studied  the
thalamus,  Insula,  Hippocampus,  Amygdala,  Para  hippo-
campus (PaHC), and medial frontal cortex (MedFC) brain
regions of the PTSD and healthy control subjects.

The thalamus is in the forebrain and handles sensory
information before sending it to the cerebral cortex. It acts
as  a  transfer  station.  The  insula,  which  is  deep  in  the
cerebral  cortex,  is  involved  in  understanding  feelings,
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Fig. (1). Brain view of selected ROI.

being aware of oneself, and tasting. In the middle temporal
lobe, the hippocampus is an important part of the brain for
memory  development,  especially  for  combining  short-term
and long-term memories. As it processes emotions and fear
reactions, the amygdala in the temporal lobe affects how we
remember our feelings. The par hippocampal cortex (PaHC),
which  is  a  large  part  of  the  hippocampus,  helps  the  brain
handle  spatial  and  contextual  memories.  As  part  of  the
executive  control  network,  the  medial  frontal  cortex
(MedFC),  which  is  in  the  frontal  brain,  also  controls  how
people act in social situations, set goals, and make decisions.

2.2. Main Contributions
The detailed study of rs-fMRI data led to the creation of

the suggested model. It used a layered stacked classifier to
correctly  group  PTSD  disorders  caused  by  trauma.  This
approach illustrated the potential of advanced neuroimaging
techniques  to  aid  in  the  early  detection  and  monitoring  of
PTSD,  particularly  in  times  of  global  pandemic-induced
stress.

Hence,  this  research  has  the  following  main
contributions.

This  article  proposed  a  novel  stacked  model  to  early
assist people with post-traumatic stress disorder (PTSD)
by looking at specific areas of interest (ROIs) taken from
resting-state functional magnetic resonance imaging (rs-
fMRI) scans.
The proposed model could detect PTSD early via selected
ROI from rs-fMRI scans.
The  identified  ROIs  could  be  utilized  as  quantitative
markers for assessing the severity of PTSD in individuals
who  have  undergone  traumatic  experiences,  especially
those associated with the COVID-19 pandemic.

3. PROPOSED METHODOLOGY
This  study  aims  to  present  an  accurate  method  for

detecting  post-traumatic  stress  disorder  by  employing  a
comprehensive methodology that includes data collection,

preprocessing,  model  construction,  and  subsequent
performance evaluation.  Based on the criteria  that  were
established  beforehand,  this  study  included  fourteen
individuals  who had been diagnosed with post-traumatic
stress disorder (PTSD) and fourteen healthy controls. The
company GE Medical Systems makes axial-RS-fMRI scans,
which  can  be  told  apart  from  other  scans  by  their  field
strength  of  3.0  tesla  and  flip  angle  of  90  degrees.  The
matrices  'X'  and  'Y'  each  contain  64  pixels  in  their
respective  dimensions.  A  discovery  MR750  MGF  and  an
EP/GR pulse sequence are utilized to execute this process.
A  width  of  3.2813  millimeters  is  assigned  to  each
individual  pixel.  Additionally,  because  each  slice  has  a
thickness of 3.299 millimeters, the total measurement of
the slices is  5952.0 millimeters.  A repeat time of  2900.0
milliseconds  and  an  echo  time  of  30.0  milliseconds  are
both  present.  The  dataset  was  divided  into  two  subsets,
training and testing, allowing the model to be trained on
many  different  datasets.  A  fresh  dataset  was  used  to
evaluate  the  model's  generalizability  by  computing  the
variance  values  with  the  Linear  Discriminant  Analysis
(LDA) function. Furthermore, using many key performance
indicators is the best way to obtain a comprehensive view
of  the  model's  performance.  Therefore,  the  model's
effectiveness  was  evaluated  using  several  key
performance  indicators,  including  accuracy,  F1  score,
precision,  recall,  area  under  the  curve,  and  specificity.
Fig.  (2)  shows  the  flow  of  work  for  the  proposed
methodology.

3.1. fMRI Data Acquisition
The proposed study data consists of two groups, PTSD

and a healthy control group, which were obtained from the
Department  of  Defense  and  Alzheimer’s  disease  Neuro-
imaging  Initiative  [25].  The  data  were  retrieved  after
taking  access  from  the  DODADNI  site  on  request.  The
samples  of  both  groups  related  to  axial-rs-fMRI  were
downloaded for study. PTSD and healthy control subjects
(fourteen  each)  were  selected  based  on  the  desired
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criteria  for  this  study.  Axial  rs-fMRI  scans  have  various
properties,  including  a  flip  angle  of  90  degrees,  a  field
strength  of  3.0  tesla,  and  they  are  produced  by  GE
Medical Systems.. The Matrix ‘X’ and ‘Y’ are 64 pixels, the
mgf model is discovery mr750, and the pulse sequence is
EP/GR.  The  pixel  spacing  of  ‘X’  and  ‘Y’  are  3.2813mm,
slices= 5952.0, slice thickness is 3.299mm, TE is 30.0 ms,
and  TR  is  2900.0  ms.  Each  PTSD  and  healthy  control
group  has  140  scans,  and  each  scan  has  48  axial  view
slices.  The  ratios  of  training  and  testing  datasets  are
presented  in  Table  1.

3.2. fMRI Data Preprocessing
The  raw  fMRI  data  contain  various  types  of  noise;

therefore,  several  preprocessing  steps  are  necessary  to
address  these  issues.The  preprocessing  steps,  such  as
slice-timing  correction,  realignment,  normalization,  and
smoothing, were conducted in MATLAB (2018) using the
SPM-12 package. Since the raw fMRI scan slices are not

acquired  sequentially,  a  slice-timing  correction  was
performed to address this issue [26]. The head motion of
each  subject  is  corrected  in  the  realignment  step.  The
human  brain  size  varies  from  person  to  person  in  our
scans,  so  each  brain  size  scan  is  normalized  with  the
normalization step. In the last step, smoothing was applied
to  increase the signal-to-noise  ratio  or  signal  sensitivity.
The preprocessed scans were further used to model first-
level analysis. The first-level analysis categorized the brain
activation pattern into PTSD and healthy control groups.
The  Regions  of  Interest  (ROI)  based  thalamus,  Insula,
Hippocampus,  Amygdala,  Para  hippocampus  (PHC),  and
medial frontal cortex (MedFC) brain regions of the PTSD
and healthy control subjects were used for the region of
interest detection [27]. The brain-activated voxels of ROI
were  extracted  using  the  “labels_Neuromorphometrics”
from  SPM-12.  The  ROI  base  activation  pattern  of  PTSD
and  healthy  control  with  an  axial-slice  view  is  shown  in
Fig. (3).

Fig. (2). A proposed deep research framework.
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Table 1. Training and testing datasets.

Datasets PTSD Control Total

Training 1396 1348 2744
Testing 611 565 1176

Fig. (3). ROI-based brain activation pattern of PTSD and control subjects.

The visual  activation pattern alone cannot determine
whether  a  specific  brain  activation  pattern  is  associated
with PTSD or a healthy control subject. In this context, it
is necessary to develop an advanced intelligence system to
differentiate  between  the  two  using  voxel  values  from
their  rs-fMRI  scans.  To  distinguish  PTSD  from  healthy
control  subjects,  we  proposed  a  stacked  deep  learning
model.  Additionally,  to  discriminate  PTSD  from  healthy
control subjects, we proposed a stacked deep model.

3.4. Proposed Research Framework
The  LDA  is  widely  used  for  classification  purposes.

LDA  operates  through  the  calculation  of  the  variance
values.  The  variance  values  are  calculated  within  and
between the classes [28]. The stacked deep model is one
of  the  best  approaches  for  classification  and  regression
problems.

Algorithm 1: Proposed Methodology
Input: PTSD dataset
Start:
Step  1:  Data  pertaining  to  PTSD,  ensuring  that  it

possesses  consistent  attributes  and  labels.

Step  2:  Handle  missing  values  and  scale  features  to
clean up the data.

Step 3: Choose basic DL models for stacking
Step  4:  Choose  VGG-16  and  DenseNet-121  model  to

create stake model
Step 5: Extract features from the VGG-16 model
Step 6: Extract features from the DenseNet-121 model
Step 7: Concatenate the extracted features
Step 8: Develop meta model
Step 9: Add a dense layer with 256 units and the ‘Relu’

activation layer
Step 10: Add a 20% dropout rate
Step  11:  Add  a  final  dense  layer  with  the  ‘sigmoid’

function
Step 12: Train the stacked model
Step 13: Test the trained stacked model
Step 14: Predictions using test data
Step 15: Evaluation
Output: Prediction
End
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Fig. (4). Proposed stacked classifier model.

A  stacked  model  is  created  by  constructing  an
ensemble that leverages the advantages of DenseNet-121
and VGG-16. In addition, by employing this methodology,
many  models  collaborate  to  enhance  performance.
Ensembles typically yield outcomes that exhibit  superior
accuracy, resilience, and generalizability in comparison to
individual  models.  This  article  provides  a  detailed
explanation of  the principles  and procedures involved in
model  ensemble.  Moreover,  due  to  the  fact  that  both
VGG-16  and  DenseNet-121  are  convolutional  neural
networks,  the  stacked  model  that  incorporates  both  of
them  requires  a  major  integration  of  their  respective
designs. The calculation of the average, the arrangement
of  the features in  separate layers,  or  the combination of
features are all methods to accomplish this goal [29]. Fig.
(4) presents the proposed model architecture.

The VGG16 is based on 13 convolutional blocks and 3

associated  layers,  and  is  considered  a  highly  effective
classification  network  in  the  field  of  data  science.  The
proposed  dataset  samples  are  utilized  for  efficient
classification.  DenseNet121  is  based  on  the  same
structure  as  DenseNet,  featuring  a  transition  layer  and
consisting  of  6,  12,  16,  and  24  layers  across  four  dense
blocks. The integration of DenseNet with VGG16 improves
accuracy,  increases  reliability,  and  enhances  feature
extraction  for  classification.  Other  models  may  not  offer
these advantages in our proposed approach.

Model  layering  is  a  method  in  ensemble  learning
where the forecasts of several base models are combined
using a meta-model at a higher level. It makes predictions
more  accurate  when  combined  with  VGG-16  and
DenseNet-121  by  using  the  unique  features  that  each
architecture  gives.  Prior  to  any  other  considerations,
VGG-16  and  DenseNet-121  undergo  training  for  a
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particular objective, such as picture categorization, with a
designated dataset. The predictions or outputs generated
by  these  models  are  then  fed  into  the  meta-model.  The
meta-model, also known as the layering model, is trained
using  the  derived  features.  This  model  aggregates  or
assigns  weights  to  the  predictions  generated  by  the
underlying models. In order to improve the accuracy and
reliability  of  its  forecasts,  the  sophisticated  model
evaluates  the  strengths  and  weaknesses  of  each
underlying model and makes appropriate adjustments to
its parameters. The layering model improves performance
and generalization by effectively utilizing predictions from
both models. It decreases the probability of overfitting and
enhances the precision of forecasts. The utilization of the
meta-model  as  a  regularization  strategy  reduces  the
impact  of  noise  and  inconsistencies  that  arise  from  the
core models in their separate predictions.

4. RESULTS
The  first  objective  was  fulfilled  through  a  boxplot  to

check  the  comparison  of  the  selected  ROI  of  PTSD  and
healthy  control  subjects.  The  boxplot  visually  compares
the  ROI  of  PTSD  and  healthy  control  subjects.  The

performance  of  the  ROI-based  regions  was  assessed  to
identify which brain regions exhibited increased activation
patterns,  and it  showed decreased activation patterns in
PTSD  subjects  compared  to  healthy  control  subjects,  as
shown in Fig. (5). The HC, PHC, MPFC, and INS were the
brain regions that showed decreased activation patterns in
PTSD  than  healthy  control  subjects.  In  contrast,  the
increased  activation  pattern  was  found  in  the  thalamus
and  AM  brain  regions  in  PTSD  subjects  compared  to
healthy  control  subjects  using  the  rs-fMRI  scans.

The  second  objective  was  to  build  a  model  that  can
identify PTSD subjects from healthy control using rs-fMRI
scans.  For  classification,  we  split  the  data  into  training
and testing parts. The 70% (2744) scan voxels data were
used as the training part, and 30% (1176) was used as the
testing part.  First,  selected DL models  were individually
applied  to  training  data  with  a  10-fold  cross-validation
method  to  check  the  performance  and  obtain  suitable
models for the stacking process. The numerical and mean
accuracy rates of 10-fold deep learning are given in Table
2. The mean accuracy rates were found to be 0.932, 0.929,
0.941, 0.498, 0.933, and 0.713 for training data for deep
learning.

Fig. (5). The boxplot compares ROI based on PTSD and healthy control subjects.

Table 2. Accuracy rate of 10-fold of deep learning algorithms on the training dataset.

Models
Accuracy

Folds -

1 2 3 4 5 6 7 8 9 10 Mean

VGG-16 0.934 0.945 0.93 0.952 0.956 0.959 0.897 0.919 0.901 0.934 0.932
CNN 0.923 0.949 0.923 0.945 0.97 0.952 0.894 0.923 0.886 0.934 0.929

DenseNet-121 0.934 0.945 0.96 0.963 0.952 0.948 0.941 0.93 0.908 0.934 0.941
MLP 0.509 0.487 0.516 0.472 0.481 0.501 0.463 0.514 0.496 0.547 0.498

MobileNet-V1 0.909 0.934 0.938 0.934 0.941 0.945 0.905 0.905 0.916 0.927 0.933
NasNetLarge 0.730 0.716 0.73 0.694 0.715 0.708 0.74 0.722 0.656 0.715 0.713
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Fig. (6). The column graph shows the performance of individual DEEP models and the stacked approach.

Table 3. Performance metrics of the stacked model on the training and testing datasets.

Datasets Accuracy Sensitivity Specificity FPR FNR

Training 98.30% 97.60% 97.10% 0.043 0.028
Testing 96.60% 95.10% 96.20% 0.058 0.047

In  addition,  before  stacking,  the  models  did  not
provide a  high accuracy prediction rate  with  the 10-fold
cross-validation  method.  However,  after  building  the
stacked model as a meta-classifier with other classifiers,
we obtained the high prediction rate present in Fig. (6). It
is clear from the results that the stacked model is best for
the experiments to predict PTSD cases using rs-fMRI.

The  stacked  model  was  further  used  to  measure  the
accuracy  rate,  sensitivity,  specificity,  FPR,  and  FNR  for
training and testing data shown in Table 3.  The stacked

model achieved a 98.30% accuracy rate for training data
and  96.60% for  testing  data.  It  was  observed  that  there
was no problem of overfitting and underfitting present in
the proposed stacked model. Similarly, the model achieved
a  97.60%  and  97.10%  sensitivity  rate  and  95.10%  and
96.20%  specificity  rate  for  the  training  and  testing
datasets, respectively. The FPR values were reported to be
0.043  and  0.058  for  the  training  and  testing  datasets,
respectively. Similarly, the FNR values were found to be
0.028  and  0.047  for  the  training  and  testing  datasets,
respectively.

Fig. (7). 2x2 confusion matrix.
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Fig.  (7)  presents the confusion matrix of  the stacked
model  that  was  built  to  check  the  right  prediction  and
wrong  prediction  decision  of  PTSD  and  healthy  control
subjects  using  their  rs-fMRI  scan’s  voxels  values.  In  the
2x2  confusion  matrix,  the  diagonal  values  indicate  the
correct  prediction,  and  the  off-diagonal  values  show the
wrong  prediction  through  stacking  for  both  the  training
and  testing  datasets.  An  increase  in  the  black-to-white
color indicates an increase in classification accuracy. The
stacked  model  correctly  predicted  the  1289  scans  of
control and 1356 scans of PTSD subjects out of 2744 rs-
fMRI scans from the training dataset. Similarly, the model
correctly predicted the 575 scans of control and 538 scans
of  PTSD  subjects  out  of  1176  rs-fMRI  scans  from  the
testing dataset. However, a total of 99 rs-fMRI scan values
from training data and 63 from the testing dataset were
incorrectly classified.

The  receiver  Operation  Characteristic  (ROC)  curve
presents a high degree rate of sensitivity and specificity.
The value of the ROC curve was found to be higher than
0.80, i.e., considered excellent; however, higher than 0.90
was rarely observed. The Roc curve with AUC is presented
in  Fig.  (8).  The  AUC  with  the  stacking  model  for  the
training  dataset  was  found  to  be  0.99  and  0.97  for  the
testing dataset. Overall, the AUC of ROC is high and very
close to 1.

5. DISCUSSION
Initially, a boxplot was used for the visual comparison

of the selected ROI of PTSD and healthy control subjects
[31]. The ROI-based region performance examined which
brain region exhibited an increased activation pattern or a
decreased activation pattern in PTSD subjects compared
to healthy control subjects, as shown in Fig. (5). The HC,
PHC,  MPFC,  and  INS  displayed  decreased  activation
patterns  in  PTSD  than  healthy  control  subjects.  In
contrast, an increased activation pattern was found in the
thalamus  and  AM  brain  regions.  Decreased  activation
indicates a reduction in oxygen levels in regions that lower
brain  activity  performance,  while  increased  activation
signifies  an  elevation  in  oxygen  levels  in  regions  that
enhance  brain  activity.  PTSD  disorder  is  caused  by
depression  and  stress,  which  affects  the  emotional  and
memory  process,  and  disrupts  the  sensory  and  motor
signals'  transmission  process  to  the  cerebral  and
behavioral effects [19, 32]. Notably, the amygdala includes
information related to depression and emotions,  and the
insula  includes  emotional  processing.  The  hippocampus
and Para-hippocampus control  the  memory  process.  The
precuneus  provides  mental  representation  of  the  event,
and the thalamus transmits sensory and motor signals to
the cerebral  system. The MedFC controls the behavioral
effects  and  stress.  The  second  objective  was  to  build  a
model  that  can  identify  the  PTSD  subjects  from  healthy
control using rs-fMRI scans. For classification, we split the
data into training and testing parts. The 70% (2744) scan
voxels data was used as the training part, and 30% (1176)
was used as the testing part.

Fig. (8). The ROC curves for sensitivity analysis of the stacked deep model.
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Table 4. Comparison with state-of-the-art studies (SOTAS).

Refs. Approach Accuracy (%) Year

[19] ANN 79.5 (2021)
[33] CNN 75.5 (2022)
[14] Stacked 87.8 (2023)

Proposed Stacked deep model 96.6 (2024)

Fig. (9). Comparison with state-of-the-art studies.

Overall,  the AUC of ROC is very close to 1 and high.
The  proposed  stacked classifier  will  help  detect  trauma-
based  PTSD  disorder  using  the  rs-fMRI  subjects.
Furthermore, by comparing the activation, it will help in
determining  the  severity  of  the  PTSD  disorder  in  brain
regions. Finally, the proposed approach can identify PTSD
early through ROI detection from rs-fMRI scans. Table 4
illustrates the comparison with state-of-the-art studies. A
comparison with state-of-the-art  studies  is  shown in Fig.
(9).

5.1. Limitations and Future Directions
A  relatively  small  sample  size  of  twenty-eight

volunteersout  of  which thirteen were PTSD patients  and
fourteen were healthy controls provided the data for the
study. This could potentially impede the generalizability of
the findings to a more extensive population. The potential
for  bias  exists  in  the  designation  of  Regions  of  Interest
(ROIs)  from  twelve  distinct  brain  regions  due  to  the
subjectivity  inherent  in  the  selection  process.

Concerns  exist  about  the  model's  generalizability  to
new and unseen data because it lacks external validation
on an independent dataset.Additionally, to ensure that the
stacked classifier performs effectively and reliably, future
studies should utilize an external dataset collected from a
different  demographic  or  clinical  context.This  will  allow
the model to be tested in a variety of situations. Further

research is needed in various areas, such as enhancing the
diversity of datasets, automating the selection of regions
of interest (ROI), and integrating multi-modal data.

CONCLUSION
The boxplot provides a visual comparison between the

selected  region  of  interest  (ROI)  in  individuals  with  post-
traumatic stress disorder (PTSD) and those who are healthy
controls.  The  ROI-based  area  performance  assessed  the
differential  activation  patterns  between  PTSD  individuals
and healthy control subjects, identifying brain regions with
elevated or decreased activation. In individuals with PTSD,
there was a decrease in activation patterns observed in the
HC, PHC, MPFC, and INS brain areas, while an increase in
activation  patterns  was  detected  in  the  thalamus and AM
brain regions, compared to healthy control subjects. Post-
Traumatic Stress Disorder (PTSD) is a condition that arises
from depression  and  stress.  It  impacts  the  emotional  and
memory processes and disrupts the transmission of sensory
and  motor  impulses,  leading  to  brain  and  behavioral
repercussions.  The  DL  models,  including  VGG-16,  CNN,
DenseNet, MobileNet, and NasNetLarge, were individually
utilized for classification. They were applied to the training
data using a 10-fold cross-validation approach. The Stacked
model which was used as a meta-classifier along with other
classifiers, achieves a high prediction rate using the 10-fold
cross-validation  approach.  The  experimental  findings
demonstrated that the stacked model is the most effective
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approach in our experiment for predicting individuals with
PTSD from control  subjects based on their  rs-fMRI scans.
The stacked model attained an accuracy rate of 98.30% on
the  training  dataset  and  96.60%  on  the  test  dataset.
Furthermore,  by  employing  the  suggested  approach,  we
would  be  capable  of  detecting  post-traumatic  stress
disorder  (PTSD)  at  a  more  initial  phase.  The  selected
regions  of  interest  (ROIs)  were  capable  of  differentiating
between  regions  exhibiting  healthy  post-traumatic  stress
disorder (PTSD) and those that had deteriorated. Similarly,
the  sensitivity  and  specificity  rates  were  also  high,  and  a
reduced  FNR  and  FPR  from  the  Stacked  model  was
reported. The AUC with stacking for the training data was
found to be 0.98 and 0.97 for testing data. Overall, the AUC
of ROC is very close to 1 and high.  The stacked classifier
will help detect trauma-based PTSD disorder using the rs-
fMRI subjects. The comparison of the activation will help to
determine  the  performance  level  or  severity  of  the  PTSD
disorder  in  brain  regions.  Additionally,  the  hippocampus
(HC),  Para-hippocampus  (PHC),  Medial  prefrontal  cortex
(MPFC), and insula (INS) tests showed decreased activation
patterns, and an increased activation pattern was found in
the  thalamus  and  Amygdala  brain  regions  in  PTSD
compared  to  healthy  control  subjects.
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