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Abstract:
Background: Spinal cord injuries (SCI) are debilitating conditions affecting individuals worldwide annually, leading
to physical, emotional, and cognitive challenges. Effective rehabilitation for SCI patients is crucial for restoring motor
function and enhancing their overall quality of life. Advances in technology, including machine learning (ML) and
computer vision, offer promising avenues for personalized SCI treatment.

Aims: This paper aimed to propose an automated and cost-effective system for spinal cord injury (SCI) rehabilitation
using machine learning techniques, leveraging data from the Toronto Rehab Pose dataset and Mediapipe for real-time
tracking.

Objective: The objective is to develop a system that predicts rehabilitation outcomes for upper body movements,
highlighting the transformative role of ML in personalized SCI treatment and offering tailored strategies for improved
outcomes.

Methods:  The  proposed  system utilized  data  from the  Toronto  Rehab  Pose  dataset  and  Mediapipe  for  real-time
tracking. Machine learning models, including Support Vector Machines (SVM), Logistic Regression, Naive Bayes, and
XGBoost,  were  employed  for  outcome  prediction.  Features  such  as  joint  positions,  angles,  velocities,  and
accelerations  were  extracted  from  movement  data  to  train  the  models.

Results: Statistical analysis revealed the ability of the system to accurately classify rehabilitation outcomes, with an
average accuracy of 98.5%. XGBoost emerged as the top-performing algorithm, demonstrating superior accuracy and
precision scores across all exercises.

Conclusion: This paper emphasizes the importance of continuous monitoring and adjustment of rehabilitation plans
based on real-time progress data, highlighting the dynamic nature of SCI rehabilitation and the need for adaptive
treatment  strategies.  By  predicting  rehabilitation  outcomes  with  high  accuracy,  the  system enables  clinicians  to
devise targeted interventions, optimizing the efficacy of the rehabilitation process.
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1. INTRODUCTION
The spinal cord is a vital part of the human's central

nervous  system,  carrying  signals  between  the  brain  and
the  rest  of  the  body.  When  damaged,  it  can  disrupt  the
flow of these signals, leading to a wide range of symptoms.
It  occurs  when  the  spinal  cord  is  damaged,  which  can
produce a wide range of physical, emotional, and cognitive
challenges.  Spinal  cord  injury  (SCI)  is  a  debilitating
condition that can result in the loss of motor function and
sensation  in  the  limbs.  Rehabilitation  for  SCI  patients
often involves the use of physical therapy to help regain
movement  and  strength  in  the  affected  limbs.  One
important  aspect  of  SCI  rehabilitation  is  tracking  the
movement of the joints in the hand and upper body, as this
can provide valuable information about the progress of the
patient and help guide therapy. It is estimated that every
year,  around  250,000  to  500,000  patients  suffer  from
spinal cord injury. The strictness of an SCI depends on the
degree and extent  of  the damage,  with  some individuals
suffering  complete  palsy  while  others  may  have  only
partial palsy. Common symptoms include loss of sensation
or movement, habitual pain, and difficulty with bowel and
bladder  control.  SCI  treatment  generally  involves  a
combination  of  medical  care,  physical  therapy,  and
recuperation  to  help  individuals  regain  important
functions  and  upgrade  their  overall  quality  of  life.
Advances  in  technology  and  new  treatments  analogous,
such as stem cell therapy and nerve-stimulating bias are
being probed as implicit ways to help individuals with SCI
recover.  With  the  right  treatment  and  support,
multitudinous  individuals  are  able  to  make  significant
progress  in  their  recovery  and  ameliorate  their  overall
quality of life.

Rehabilitation  for  individuals  with  SCI  is  a  crucial
aspect  of  the  recovery  process.  The  idea  of  SCI
recuperation  is  to  help  individuals  reclaim  important
function and mobility, as well as to upgrade their overall
quality  of  life.  Rehabilitation  generally  includes  a
combination  of  medical  care,  physical  therapy,  and
occupational  remedy.  Physical  therapy  aims  to  improve
strength,  flexibility,  and  coordination  through  exercises
targeting  muscle  tone,  range  of  motion,  and  cardio-
vascular  fitness.

Occupational  therapy,  on  the  other  hand,  focuses  on
helping individuals regain the capability to perform day-to-
day living exercises. Recent advancements in technology
have introduced new tools for SCI rehabilitation, such as
virtual  reality  and  robotics,  which  aid  in  restoring
movement  and  enhancing  physical  capabilities.
Additionally,  ongoing  research  is  exploring  innovative
treatments  like  stem  cell  therapy  and  nerve-stimulating
techniques  to  further  facilitate  the  recovery  process  for
individuals with SCI.

Freund et al. [1] in 2013 conducted a review of spinal
cord  changes,  including  both  anatomical  changes  and
changes  in  the  brain,  through  neuroimaging  studies.
Kemal  Nas  et  al.  [2]  in  2015  aimed  to  deliver
comprehensive  information  on  treatments  offered  by

various  rehabilitation  disciplines  and  formulated  guide-
lines for clinical decision-making grounded on the result.
Grabher  et  al.  [3]  in  2015  used  advanced  magnetic
resonance imaging to estimate progressive changes in the
sensors  and  to  determine  how  the  sensory  result  of
neuropathic pain below the injury degree gets cured due
to  rehabilitation.  Huang  et  al.  [4]  in  2015  introduced  a
rehabilitation  robot  named  Amadeo,  which  provides
position-based passive training and interactive games with
visual and audio feedback for finger extension and flexion.
The  Reinforcement  Learning  Neural  Network  controller
can  control  the  Amadeo  robot  but  has  the  limitation  of
providing constant assistive force intensity, regardless of
the  actual  needs  of  the  patient.  Dolatabadi  et  al.  [5]  in
2017  utilized  the  Microsoft  Kinect  sensor  to  collect
accurate data on the motion of upper limb rehabilitation in
10 healthy individuals and 9 stroke survivors considering 3
types of upper body exercises but ignoring the lower body.

The use of machine learning (ML) in spinal cord injury
(SCI)  rehabilitation  is  getting  increasingly  popular  as  it
can  be  used  to  analyze  large  quantities  of  data  from
various sources, similar to 3D tracking of joint movement,
wearable bias, and clinical assessments. The data can be
utilized  to  identify  patterns  and  trends  and  forecast  the
progress of cases, showcasing one of the key advantages
of ML in SCI rehabilitation.

This  can  help  healthcare  professionals  make  further
informed decisions about patient care and treatment and
optimize treatment plans. Zhi et al. [6], in 2017, developed
a computer vision system to improve robotic rehabilitation
therapy by automatically detecting compensatory motions
using the Kinect sensor and SVM. Dalkilic et al., in 2018
[7],  investigated  the  ability  of  the  cerebrospinal  fluid
(CSF) and magnetic resonance imaging (MRI) biomarkers
to  classify  injury  severity  and  predict  neurological
recovery in acute cervical SCI patients. CSF inflammatory
biomarkers  demonstrated  strong  predictive  power  for
Association  Impairment  Scale  (AIS)  grade  conversion,
while  structural  MRI  biomarkers  excelled  in  predicting
motor  score  improvement,  highlighting  their  comple-
mentary  roles  in  assessing  SCI  prognosis.

Khan et  al.  [8],  in  2019,  applied  K-Nearest  Neighbor
(KNN)  and  Support  Vector  Machines  (SVM)  to  analyze
imaging  data  and  predict  outcomes  in  large  epidemio-
logical datasets. The training set was annotated by board-
certified  radiologists  in  the  axial  spinal  magnetic
resonance  images.

Inoue et al. [9], in 2020, performed prediction for the
recovery  of  patients  using  XGBoost,  logistic  regression
(LR), and Random Forest (RF), showing improvements in
functional motor status, achieving an accuracy of 81% on
average. Jiang et al. [10], in 2020, proposed a CNN model
combined with the Common Space model for recognizing
the  Electroencephalography  (EEG)  signals  related  to
unilateral hand movements. The average recognition rate
was 78% for 10 patients with spinal cord injury, with the
optimal subject recognition rate at 82% and an accuracy
of  82.4%  for  the  offline  EEG  recognition  and  control
system.  DeVries  et  al.  [11],  in  2020,  introduced  a  new
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model for predicting lower body recovery for spinal cord
injury patients using unsupervised learning, with Logistic
Regression and K-mean models to predict if SCI patients
can walk after rehabilitation. This work highlights the poor
AUC  for  imbalanced  data  sets.  Ahammad  et  al.  [12],  in
2020, presented a CNN-deep segmentation-based boosting
classifier applied to sensor spinal cord injury image data
using a wearable sensor for data collection and a filtering
algorithm for feature extraction with 98.5% accuracy. In
2020, Haber et al. [13] evaluated the accuracy of clinical
prediction  rules  for  independent  ambulation  post-spinal
cord injury, especially with age modifications from 65 to
50.  Findings  confirmed  strong  prognostic  accuracy  for
combined AIS subgroups but suggested lower accuracy for
separate AIS groups, emphasizing the importance of age,
with a potential cutoff at 50 for improved prognostication.

Alhammad et al. [14], in 2021, developed a systematic
activity  recognition  method  using  a  wrist-worn
accelerometer  to  track  physical  activities  during
rehabilitation for spinal cord injury and achieved 94.86%,
94.15%, 96%, and 94% accuracy for SVM, KNN, Decision
Tree  (DT),  and  Gaussian  Naïve  Bayes,  respectively,  in
recognizing physical activities. Dietz et al.  [15], in 2022,
focused on MRI evaluation and segmentation for improved
diagnostic accuracy and prognosis, prediction of mobility,
functional ability, prevention of long-term complications,
and assessment of psychological quality of life. Yang et al.
[16],  in  2022,  proposed  a  prediction  model  for  the
discharge score of daily living activities and constructed a
more  comprehensive  dataset  combining  ML,  AI,  and
optimized  algorithms  to  predict  the  daily  living  score.
Fallah et al. [17], in 2022, developed a simple and easy-to-
use  mortality  risk  assessment  tool  that  uses  machine
learning for pattern recognition to predict in-hospital and
one-year  mortality  following  spinal  cord  injury,  with  a
predicted  mortality  Area  Under  a  Receiver  Operating
Characteristic  curve  (AUC)  value  of  85%  and  86%,
reducing  the  bias  in  estimating  parameters.

Buri  et.al.,  in  2022  [18],  evaluated  the  robustness  of
unbiased  recursive  partitioning  with  conditional  inference
trees in identifying homogeneous subgroups and compared
its  predictive  performance  with  traditional  statistical
methods  and  machine  learning  techniques.  URP-CTREE
demonstrated replicable and robust subgroup identification
and  comparable  prognostic  accuracy  to  machine  learning,
supporting its robustness and practicality in clinical settings.
In the study outlined by Fallah et al. [17] (2022), the process
involved  selecting  variables  associated  with  outcomes  in  a
cohort  of  1245  traumatic  spinal  cord  injury  (tSCI)  patients
and  creating  the  Spinal  Cord  Injury  Risk  Score  (SCIRS)
through a two-step variable selection approach, comprising
bivariate  analysis  and  a  LASSO  model.  The  SCIRS  was
statistically  and  clinically  validated  using  10-fold  cross-
validation  and  comparison  with  the  Injury  Severity  Score
(ISS),  demonstrating  its  predictive  accuracy  for  in-hospital
and  1-year  mortality  following  tSCI.  Machine  learning
techniques,  including  neural  networks  and  decision  trees,
were  utilized  to  determine  variable  weighting  and  develop
the SCIRS algorithm.

Several  studies  attempted  to  substitute  traditional
rehabilitation with a modern approach using Virtual Reality
(VR) devices for better movement tracking. Kizony et al. [19],
in  2005,  provided  a  VR  system  that  gives  users  natural
control of movements, the ability to use as many body parts
as  desired,  and  the  flexibility  to  adapt  to  specific  therapy
tasks.  Krutli  et  al.  [20],  in  2018,  used  a  VR  game  gesture
chair  to  enhance  recovery  through  rehabilitation  in
individuals with spinal cord injuries and compared the effects
on movement performance between the two groups (with and
without SCI), focusing on the upper limb movement. B. Chi et
al.  [21],  in 2019, investigated the efficacy of VR therapy in
spinal cord injury neuropathic pain, categorizing it into “at
level” and “below level,” and examining the use of VR with
immersive and non-immersive mirror visual feedback for pain
reduction. Palaniappan et al. [22], in 2020, also used VR for
rehabilitation by developing a pilot/adaptive exergame using
commercial  VR  systems  with  customizable  parameters  for
gameplay  interface  and  observed  the  effects  on  the  motor
performance  of  patients.  In  the  medical  field,  machine
learning  (ML)  and  deep  learning  (DL)  algorithms  play  a
crucial  role  in  revolutionizing  rehabilitation  practices  [23,
24].  By  harnessing  the  power  of  data  analysis  and  pattern
recognition,  these  algorithms  aid  in  customizing  treatment
plans, predicting patient responses, and refining therapeutic
approaches [25-27]. Their application facilitates personalized
care  delivery,  leading  to  improved  patient  outcomes  and
enhanced  efficiency  in  rehabilitation  processes.

While prior research has laid the groundwork for utilizing
technology in rehabilitation, there is a clear need for more
comprehensive datasets, advanced tracking capabilities, and
improved  predictive  modeling  techniques  to  enhance  the
effectiveness of rehabilitation strategies for spinal cord injury
patients. Previous works have overlooked the importance of
capturing  subtle  movements  and  variations  in  motion
patterns  of  the  patients,  which  are  crucial  for  developing
accurate predictive models.

For this paper, the main contributions are as follows:

1.1. Proposing an Automated Rehabilitation System
This system leverages machine learning models to offer a

cost-effective solution for rehabilitation exercises.

1.2. Streamlining Data Collection
Movement during exercises is captured using a camera,

and  the  system  automatically  extracts  joint  positions  and
angles from the images.

1.3.  Enhancing  Data  Capture  with  3D  Fingertip
Tracking

The  system  goes  beyond  basic  movement  by
incorporating  3D  tracking  of  fingertips,  allowing  for  more
precise  exercise  classification  (e.g.,  reach-forward/back,
reach-side/side).  These  enriched  data  are  used  to  predict
rehabilitation outcomes.

1.4. Multi-Level Outcome Prediction
The  system  employs  various  machine  learning  models

(SVM,  Logistic  Regression,  etc.)  to  classify  rehabilitation
outcomes into different levels, providing valuable insights for
personalized rehabilitation plans.
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Fig. (1). Basic architecture/workflow of the proposed system.
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2. PROPOSED METHODOLOGY
In  proposing  an  automated  rehabilitation  system,  a

cost-effective  solution  is  introduced,  leveraging  image
processing and machine learning techniques for effective
rehabilitation  exercises.  Through  streamlined  data
collection,  the  system  captures  movement  during
exercises  using  a  camera,  automatically  extracting  joint
positions  and  angles  from  the  images.  Features  such  as
joint  angles,  velocities,  and  accelerations  are  extracted,
incorporating  additional  features  derived  from  clinical
assessment  scores  or  annotations  of  compensatory
motions  provided  in  the  dataset.  These  features  provide
valuable  insights  into  the  motion  patterns  and  aid  in
training  the  machine  learning  model.  To  enhance  data
capture,  the  system  integrates  3D  fingertip  tracking,
surpassing  basic  movement  tracking  capabilities.  This
advanced feature enables precise exercise classification,
distinguishing  between  reach-forward/back  and  reach-
side/side movements. By incorporating this enriched data,
the system predicts rehabilitation outcomes with greater
accuracy  and  granularity,  contributing  to  more  effective
rehabilitation  plans.  Fig.  (1)  depicts  the  architecture  or
workflow of the system.

This  approach  employs  a  multi-level  outcome
prediction  strategy.  Machine  learning  models,  such  as
Support  Vector  Machine  (SVM),  Logistic  Regression,
Naive  Bayes,  and  XGboost,  are  used  to  categorize
potential rehabilitation outcomes into different levels. This
multi-level  classification  provides  valuable  insights  for
tailoring  personalized  rehabilitation  plans  to  individual
needs,  ultimately  optimizing  the  efficacy  of  the
rehabilitation  process.  The  detailed  algorithm  for  the
proposed  method  is  shown  in  Algorithm  1.

Algorithm1: Automated Rehabilitation System
1. Initialize:
- Load Toronto Rehab Pose dataset
- Set machine learning models: SVM, Logistic Regression, Naive Bayes,
XGBoost
2. Data Collection and Preprocessing:
- Capture movement during exercises using a camera
- Extract joint positions and angles from images
-  Incorporate  additional  features  from  clinical  assessment  scores  or
compensatory  motion  annotations
- Integrate 3D fingertip tracking for enhanced data capture
3. Feature Extraction:
- Extract features, such as joint angles, velocities, and accelerations
4. Model Training:
- Train machine learning models using the extracted features
- Employ a multi-level outcome prediction strategy
5. Evaluation:
- Evaluate the trained models using the dataset

2.1. Dataset
The  proposed  study  utilized  the  Toronto  Rehab  Pose

dataset [28, 29] and a dataset generated using Mediapipe.
The  Toronto  Rehab  Pose  dataset,  captured  with  a
Microsoft  Kinect  sensor,  included  two  groups  of
participants:  10 healthy individuals  and 9 SCI  survivors.
These participants  performed a series  of  seated motions
using  an  upper-limb  rehabilitation  robot,  with  healthy
subjects  executing additional  sets  of  scripted motions to
simulate  common  compensatory  movements  post-SCI.

Each  recorded  data  frame  was  assigned  to  one  of  four
labels:  “no  compensation,”  “lean-forward,”  “shoulder
elevation,” or “trunk rotation.” Stroke survivors engaged
in two specific exercises, namely reach-forward-backward
and  reach-side-to-side,  using  both  their  left  and  right
hands.  Concurrently,  healthy  participants  performed the
same  exercises  and  additionally  mimicked  common
compensatory movements observed in stroke patients. The
dataset  also  incorporated  common  clinical  assessment
scores,  with  compensatory  motions  annotated  by  two
experts  for  both  healthy  and  SCI  participants.

2.2. Data Generated Using Upper-body Module
Upper  body  movement  tracking  was  recorded  with

Mediapipe, which captured and analyzed the position and
motion  of  the  upper  body  of  an  individual.  This  tool
processed  video  feeds  from  a  camera,  detecting  and
tracking the upper body and outputting positional data in
the x, y, and z directions, as illustrated in Fig. (2).

Fig. (2). Samples of upper body tracking.

The exercises could be tailored to focus on traditional
rehabilitation exercises aimed at analyzing the movement
patterns of the upper body during side-to-side reaching in
both left and right directions, as well as forward-reaching
movements in both left and right directions.

Table 1a-d displays the data obtained from upper body
tracking  via  camera  for  the  movements  of  reaching
forward in the left and right directions and reaching side-
to-side in the left and right directions.

This  data  can  be  used  to  analyze  the  movement
patterns  of  the  upper  body  during  each  exercise  and
compare  them to  understand  the  effects  of  the  different
exercises on the upper body.

3. RESULTS AND DISCUSSIONS
The proposed model for Tracking joint movement was

implemented on a system with Windows 11 64-bit OS with
16GB RAM and Python 3.10.2 released by Python Software
Foundation located in Wilmington, DE, USA, installed. The
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Table 1a. Joint positions generated data from upper body tracking.
Reaching_Forward_Left.

x Y Z

0.449627 0.574429 -0.47363
0.45624 0.574263 -0.2808
0.459044 0.574364 -0.28252
0.458826 0.574343 -0.31139
0.459098 0.574036 -0.23481
0.459962 0.574003 -0.16854
0.460518 0.573819 -0.17459
0.463594 0.579377 -0.20323
0.46451 0.580061 -0.20247
0.46578 0.582335 -0.21579
0.468393 0.587084 -0.23068

Table 1b. Reaching_Forward_Right.

X y z

0.102073 0.643169 -0.15064
0.101888 0.64439 -0.17574
0.100787 0.645382 -0.20663
0.100754 0.645859 -0.23288
0.099918 0.64601 -0.25194
0.099816 0.644662 -0.20773
0.099739 0.64468 -0.20612
0.100518 0.644724 -0.20368
0.10117 0.644752 -0.23822

0.101126 0.6457 -0.23243
0.101012 0.646707 -0.22812

Table 1c. Reaching_Side_to_Side_Left

x Y Z

0.474478 0.636219 -0.17169
0.474697 0.63096 -0.34395
0.474799 0.6279 -0.34451
0.474847 0.625656 -0.34255
0.474889 0.624523 -0.35377
0.474915 0.623283 -0.33485
0.474906 0.62327 -0.32298
0.474751 0.622386 -0.31379
0.474663 0.621883 -0.30888
0.474661 0.62154 -0.30536
0.474645 0.621086 -0.30428

Table 1d. Reaching_Side_to_Side_Right.

X y z

0.101072 0.62521 -0.37415
0.10125 0.625326 -0.49774
0.101282 0.62549 -0.4998
0.101295 0.625729 -0.50438
0.101273 0.625708 -0.5078
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X y z

0.101257 0.625677 -0.50129
0.103645 0.625513 -0.43759
0.107271 0.624578 -0.29902
0.10934 0.623977 -0.31615
0.110335 0.623602 -0.28044
0.110976 0.623411 -0.29095

Table 2. Accuracy of 3D tracking.

Modules Scores

Hand 0.95-0.99
Upper Body 0.99

Table 3. Accuracy of four exercise with ML models.

Algorithm Reaching Forward_L Reaching Forward_R Reaching Side_to_Side_L Reaching Side_to_Side_R

SVM 99.84 99.79 99.63 99.82
Logistic Regression 99.72 99.58 99.75 99.76

Naive Bayes 97.05 96.49 97.89 96.11
MLPClassifier 99.7 99.51 98.64 99.85
SGDClassifier 96.93 94.41 98.64 97.29

Xgboost 99.87 99.92 99.78 99.79

Table 4. Performance comparison with existing works.

Algorithm / Avg Accuracy [8] [14] [9] [11] [6] [28] Proposed Method

SVM 89.80 94.80 - - 86.00 93.30 99.60
Logistic Regression - - 80.60 87.54 - - 99.66

Naive Bayes - 94.00 - - - - 96.84
XGboost - - 81.10 - - - 99.64

widely used and open-source Visual Studio Code was used
for  implementation  purposes.  The  libraries  OpenCV
4.6.0.66,  Numpy 1.23.3,  TensorFlow,  Pandas,  Mediapipe
0.9.2.1,  and  Sklearn  were  installed  and  used  along  with
the Jupyter extension present in it.

The mediapipe library demonstrated high accuracy in
tracking,  with  an  overall  accuracy  rate  of  95-99%,  as
shown in Table 2. This indicated the capability to capture
subtle  movements  and  variations  in  the  subjects'
movements  with  precision.

Once data were collected using the tracking data, the
coordinates were converted into a useful dataset using a
variety  of  data  processing  techniques  like  scaling  and
normalization.  Features,  such  as  joint  angles,  joint
velocities,  and  joint  accelerations,  were  extracted  and
utilized as input to the machine learning algorithms. The
accuracy of several popular machine learning algorithms,
including  Support  Vector  Machines  (SVM),  k-nearest
Neighbors  (KNN),  Logistic  Regression,  Naive  Bayes,
Multi-Layer  Perceptron  (MLP)  Classifier,  Stochastic
Gradient  Descent  (SGD)  Classifier,  and  XGBoost,  in
predicting patient outcomes using the upper body module
and  hand  module  was  compared.  Each  algorithm  was

trained and tested utilizing a 70/30 split, with 70% of the
data  allocated  for  training  and  the  remaining  30%  for
testing.  Additionally,  performance  evaluation  of  each
algorithm  was  conducted  using  accuracy  metrics.

As  Table  3  shows,  XGBoost  outperformed  the  other
algorithms in terms of accuracy in almost every exercise,
with an accuracy score of  0.987-0.992, followed by SVM
with  an  accuracy  score  of  0.9963-0.9984.  Furthermore,
XGBoost had the highest precision scores, indicating that
it  performs  better  at  identifying  true  positives  and
minimizing  false  positives  and  false  negatives.

A  comparative  analysis  was  conducted  with  existing
research works, as shown in Table 4.  Findings indicated
that  the  proposed  methodology  demonstrates  superior
accuracy  compared  to  existing  approaches.  Specifically,
XGBoost exhibited the highest degree of accuracy with an
average of 99.64%, followed closely by logistic regression
at 99.63%.

CONCLUSION
The  proposed  automated  rehabilitation  system

presents  a  cost-effective  solution  for  spinal  cord  injury
rehabilitation. Leveraging advanced technologies, such as

(Table 1) contd.....
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3D  fingertip  tracking,  the  system  facilitates  precise
exercise classification and outcome prediction, surpassing
conventional  approaches.  The  system  streamlines  data
collection by capturing movement during exercises using a
camera  and  automatically  extracting  joint  positions  and
angles.  This  approach  enhances  the  granularity  of  data
analysis,  incorporating  features,  such  as  joint  angles,
velocities,  and  accelerations,  along  with  clinical
assessment  scores  or  annotations  of  compensatory
motions.  Through  a  multi-level  outcome  prediction
strategy  employing  various  machine  learning  models,
potential  rehabilitation  outcomes  are  categorized  with
remarkable  accuracy.

Further,  XGBoost  emerges  as  the  top-performing
algorithm, demonstrating superior accuracy and precision
scores  across  all  exercises.  Comparative  analysis  with
existing research highlights the efficacy of  the proposed
methodology,  showcasing  significantly  higher  accuracy
rates.  By  predicting  rehabilitation  outcomes  with  high
accuracy, the system enables clinicians to devise targeted
interventions, optimizing the efficacy of the rehabilitation
process.  Moreover,  the  dataset  of  this  study  is  limited
primarily  to  upper-limb  rehabilitation  exercises,
potentially  constraining  the  generalizability  of  the
proposed methodology to broader rehabilitation contexts
and diverse patient populations. To address this limitation,
future research should focus on expanding the dataset to
include  a  more  comprehensive  range  of  rehabilitation
exercises,  patient  demographics,  and  clinical  conditions
beyond spinal cord injury. By diversifying the dataset, the
robustness and applicability of the proposed methodology
can be enhanced, ensuring its effectiveness across a wider
spectrum of rehabilitation scenarios.
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