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Abstract:
Background: For the purpose of diagnosing diseases and developing treatment plans, blood cell pictures must be
accurately classified. This procedure can be greatly enhanced by automated systems that make use of deep learning
and the Internet of Medical Things (IoMT).

Objective: In order to improve illness detection and increase healthcare accessibility, this work suggests an IoMT-
based system for remote blood cell picture transmission and classification utilizing deep learning algorithms.

Methods: High-resolution pictures of blood cells are captured by an IoMT tiny camera and wirelessly sent to a cloud-
based infrastructure. The blood cells are divided into groups according to a, deeplearning classification algorithm,
including neutrophils, lymphocytes, monocytes, and eosinophils.

Results:  The  IoMT-enabled  system  excels  in  transmitting  and  analyzing  blood  cell  images,  achieving  precise
classification.  Utilizing  deep  learning  models  with  multi-scale  feature  extraction  and  attention  mechanisms,  the
system demonstrates robust performance. Numerical results showcase a high accuracy of approximately 97.21%,
along with  noteworthy precision,  recall,  and F1 scores  for  individual  blood cell  classes.  Eosinophil,  Lymphocyte,
Monocyte,  and Neutrophil  classes exhibit  strong performance metrics,  emphasizing the system's effectiveness in
accurate blood cell classification.

Conclusion:  By  combining  IoMT  and  deep  learning  with  blood  cell  image  analysis,  diagnostic  accessibility  and
efficiency are improved. The suggested approach has the potential to completely transform healthcare by facilitating
prompt interventions, individualized treatment regimens, and better patient outcomes. It is essential to continuously
enhance  and  validate  the  system  in  order  to  maximize  its  efficacy  and  dependability  in  a  variety  of  healthcare
settings.
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1. INTRODUCTION
An  essential  component  of  illness  diagnosis  and

therapy  planning  is  blood  cell  analysis.  Precise  cate-

gorization  of  blood  cell  types,  including  neutrophil,
lymphocyte,  monocyte,  and  eosinophil,  aids  in  focused
therapy  and  individualized  care  by  offering  important
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insights into a variety of illnesses and disorders. Manual
blood  cell  categorization,  however,  may  be  laborious,
arbitrary,  and  prone  to  human  mistakes.  Therefore,
automated methods that effectively categorize blood cell
pictures  are  required  in  order  to  provide  prompt  and
precise  diagnosis  [1].

1.1.  Background  and  Significance  of  Blood  Cell
Image Classification in Disease Diagnosis

Classifying  blood  cell  images  has  important
applications in medical diagnosis. It makes it possible to
identify  aberrant  or  atypical  cell  groups  linked  to
particular  illnesses.  For  instance,  aberrant  lymphocyte
counts  may  point  to  viral  infections  or  autoimmune
illnesses, whereas elevated eosinophil counts may indicate
allergies,  asthma,  parasite  infections,  or  autoimmune
disorders.  Precise  categorization  of  blood  cell  pictures
yields important data for timely illness diagnosis, effective
therapy preparation, and tracking disease development [1,
2].  Conventional  methods  of  classifying  blood  cells  need
skilled  individuals  to  manually  examine  blood  smears,
which  is  a  labor-intensive  and  time-consuming  process.
Moreover, access to specialized expertise may be limited
in remote or underserved areas. By automating the blood
cell  classification  process,  healthcare  professionals  can
save  time,  reduce  subjectivity,  and  extend  access  to
quality  diagnostic  services  [2-4].

1.2. Overview of the Proposed IoMT-based Blood Cell
Image Transmission and Classification System

In  this  study,  we  provide  a  novel  method  for  the
remote  transmission  and  categorization  of  blood  cell
pictures  that  make  use  of  deep  learning  techniques  and
the  IoMT.  At  the  point  of  care,  our  system  combines
portable  IoMT  equipment,  including  microscopes  or
smartphone  attachments,  to  produce  high-quality  blood
cell  pictures.  These  gadgets  have  sophisticated  imaging
features and are linked to a cloud platform or centralized
server. An effective and safe data transmission protocol is
included  in  the  system  to  guarantee  that  blood  cell
pictures are reliably transferred from the IoMT devices to
the central site. At the centralized location, the received
images  undergo  preprocessing  and  enhancement  to
optimize  image  quality  and  standardize  features  for
subsequent  analysis.  Deep  learning  models,  trained  on
annotated datasets, are employed to automatically classify
the  blood  cell  images  into  Eosinophil,  Lymphocyte,
Monocyte,  and  Neutrophil  types.

1.3. Research Objectives and Scope
The chief objective of this exploration is to develop an

IoMT-based  system  for  remote  blood  cell  image
transmission  and  classification.  The  system  aims  to
provide  healthcare  professionals  with  an  automated  and
efficient  approach  to  diagnose  and  monitor  blood  cell
types.  The  research  objectives  include:

1.  Integrating  IoMT  devices  for  capturing  blood  cell
images at the point of care.

2. Implementing preprocessing techniques to enhance

image quality and standardize features.
3. Developing deep learning models for accurate and

automated classification of blood cell images.
4.  Evaluating  the  system's  performance  in  terms  of

classification accuracy, sensitivity, specificity, and overall
effectiveness.

5.  Assessing  the  clinical  implications  and  potential
impact  of  the  proposed  system  in  disease  diagnosis  and
treatment planning.

The creation and assessment of the IoMT-based blood
cell image transmission and classification system are the
main  areas  of  attention  for  this  study.  It  includes  deep
learning  methods,  data  transfer,  picture  preprocessing,
performance evaluation, and the technological elements of
integrating  IoMT  devices.  Clinical  validation  on  a  broad
patient population is not covered by the study. The overall
goal  of  this  research  is  to  advance  the  field  of  medical
diagnostics by offering an effective and automated method
for  classifying  blood  cell  images  made  possible  by  IoMT
technology.  Improved  illness  detection,  individualized
treatment, and accessibility to healthcare are all possible
with the suggested method, which might eventually result
in better patient outcomes.

2. LITERATURE REVIEW

2.1.  Overview  of  Existing  Methods  for  Blood  Cell
Image Classification

Blood  cell  image  classification  is  a  critical  task  in
medical  diagnostics,  enabling  the  identification  and
characterization  of  various  blood  cell  types.  Over  the
years,  several  methods  and  techniques  have  been
employed  to  automate  the  process  and  improve  the
accuracy and efficiency of blood cell classification. In this
literature review, we provide an overview of the existing
methods and highlight their strengths and limitations.

2.1.1. Conventional Image Processing Techniques
Blood  cell  image  analysis  has  made  extensive  use  of

currently available image processing tools. Preprocessing
techniques,  including  noise  reduction,  contrast
enhancement,  and  segmentation  to  separate  individual
cells,  are  frequently  used  in  these  procedures.  After
extracting  characteristics  like  form,  texture,  and  colour,
machine  learning  methods  are  used  for  categorization.
Even while these techniques have produced encouraging
results,  a  large  portion  of  their  features  are  handmade,
which  may  restrict  their  ability  to  capture  intricate  cell
properties [5, 6].

2.1.2. Machine Learning Approaches
Blood cell image categorization has seen considerable

success  when  machine  learning  techniques  are  used.
These  methods  include  random  forests,  k-nearest
neighbours  (k-NN),  and  support  vector  machines  (SVM)
[7, 8]. These techniques learn to categorise cells according
to pixel  intensities or extracted attributes.  However,  the
quality  and  discriminative  strength  of  the  handmade
features—which  can  be  difficult  to  describe  precisely—
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have  a  significant  impact  on  how  well  these  algorithms
function [9].

2.1.3. Deep Learning-based Approaches
Deep learning techniques, predominantly CNNs, have

transformed the field of medical image analysis, including
blood  cell  classification.  CNNs  can  automatically  learn
relevant  features  directly  from  raw  images,  eliminating
the  need  for  manual  feature  engineering.  Deep  learning
models  have  attained  state-of-the-art  performance  in
various  domains,  including  blood  cell  classification.
Transfer learning, where pre-trained CNN models are fine-
tuned on specific blood cell datasets, has further improved
the classification accuracy [9].

2.1.4. Ensemble Methods
Ensemble methods have been employed to enhance the

classification  performance  by  combining  multiple
classifiers. These methods include bagging, boosting, and
stacking,  where  the  output  of  multiple  classifiers  is
aggregated  to  make  the  final  classification  decision.
Ensemble  methods  often  lead  to  improved  accuracy,
robustness, and generalization of blood cell classification
models [8, 9].

2.1.5. Deep Learning with Attention Mechanisms
Recent  advancements  in  deep  learning  have

introduced  attention  mechanisms  that  enable  models  to
focus  on  relevant  image  regions  during  classification.
Attention  mechanisms  have  shown  promising  results  in
blood  cell  classification  tasks,  allowing  the  models  to
effectively  capture important  details  and features within
the images [8, 9].

While  these  existing  methods  have  demonstrated
success  in  blood  cell  image  classification,  there  are  still
challenges  to  overcome.  Issues  such  as  imbalanced
datasets, varying image quality, and interclass similarities
pose  challenges  to  accurate  classification.  Furthermore,
the  interpretability  of  deep  learning  models  remains  a
concern,  as  they  are  often  viewed  as  black-box  models.

2.2. Review of IoMT Applications in Healthcare and
Medical Diagnostics

The  integration  of  the  IoMT  in  healthcare  has
revolutionized  the  field  of  medical  diagnostics,  enabling
the  collection,  analysis,  and  sharing  of  real-time  patient
data.  IoMT  has  opened  up  new  avenues  for  remote
monitoring [10,  11],  improved disease management,  and
personalized  healthcare.  In  this  review,  we  provide  an
overview  of  IoMT  applications  in  healthcare  and  its
specific  relevance  to  medical  diagnostics.

2.2.1. Remote Patient Monitoring
IoMT  enables  continuous  remote  monitoring  of

patient> vital signs, physiological parameters, and other
health-related  data.  Wearable  devices,  such  as
smartwatches and biosensors,  transmit  real-time data to
healthcare  providers,  allowing  for  proactive  disease
management  and  early  intervention  [12].  In  medical
diagnostics, remote monitoring facilitates the tracking of

disease  progression  and  response  to  treatment.  For
example, continuous monitoring of blood pressure, heart
rate,  and  glucose  levels  can  aid  in  the  diagnosis  and
management of cardiovascular diseases and diabetes [13,
14].

2.2.2. Telemedicine and Teleconsultation
IoMT  technologies  have  paved  the  way  for

telemedicine  and  teleconsultation,  enabling  healthcare
professionals to remotely analyze and treat patients [15].
Through  video  conferencing,  patients  can  communicate
their  symptoms,  share  images  or  medical  records,  and
receive medical advice from healthcare providers. In the
context of medical diagnostics, telemedicine facilitates the
remote interpretation of medical images, such as X-rays,
MRIs, and blood cell images, allowing for timely diagnosis
and treatment recommendations [16].

2.2.3. Data-driven Diagnostics
IoMT devices generate a vast amount of patient data,

including  physiological  readings,  health  history,  and
environmental  factors.  Advanced  analytics  and  machine
learning techniques can process and analyze this data to
identify  patterns,  predict  disease  risks,  and  support
diagnostic  decision-making.  Data-driven  diagnostics
leverage  IoMT  to  enhance  accuracy,  efficiency,  and
personalized  treatment  plans.  For  example,  in  medical
imaging,  deep  learning  algorithms  can  analyze  medical
images to detect anomalies and assist in the diagnosis of
diseases such as cancer or neurological disorders [17, 18].

2.2.4. Intelligent Health Monitoring Systems
IoMT  enables  the  development  of  intelligent  health

monitoring  systems  that  provide  real-time  alerts,
notifications,  and  automated  decision  support.  These
systems utilize advanced algorithms and AI techniques to
analyze data streams, detect abnormalities, and generate
actionable  insights  [5,  18].  In  medical  diagnostics,
intelligent  health  monitoring  systems  can  flag  potential
health  risks,  identify  trends,  and  trigger  timely
interventions.  For  instance,  in  the  case  of  cardiac
monitoring, IoMT devices can detect irregularities in heart
rhythms  and  notify  healthcare  providers  for  prompt
intervention  [19].

2.2.5. Data Integration and Interoperability
IoMT  facilitates  the  seamless  integration  and

interoperability  of  healthcare  systems,  enabling  the
sharing  and  exchange  of  patient  data  across  different
healthcare  providers  and  platforms.  This  integration
ensures that medical diagnostics can be performed more
efficiently,  with  access  to  comprehensive  patient
information.  By  connecting  various  devices,  electronic
health  records,  and  diagnostic  tools,  IoMT  promotes
collaboration, reduces redundant tests, and enhances the
accuracy of diagnoses [19].

The  applications  of  IoMT  in  healthcare  and  medical
diagnostics  are  expanding  rapidly,  offering  numerous
benefits  in  terms  of  improved  patient  outcomes,  remote
access  to  healthcare  services,  and  enhanced  disease
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management.  The  integration  of  IoMT  with  medical
diagnostics  brings  the  potential  for  faster  and  more
accurate  diagnoses,  personalized  treatment  plans,  and
efficient  healthcare  delivery  [20].  In  our  proposed
research, we leverage the capabilities of IoMT to remotely
transmit  and  classify  blood  cell  images  for  disease
diagnosis.  By combining the advancements in IoMT with
deep learning techniques, we aim to develop an automated
system that enhances the accuracy and efficiency of blood
cell image classification, contributing to improved medical
diagnostics and personalized care.

3. MATERIALS AND METHODS
Our  proposed  system  model  integrates  the  IoMT

devices,  data  transmission  protocols,  preprocessing
techniques, and deep learning models to enable efficient
blood  cell  image  transmission  and  classification.  The
model  shown  in  Fig>(1)  is  designed  to  automate  the
process of capturing blood cell images, transmitting them
securely  to  a  centralized  location,  preprocessing  the
images  for  enhancement,  and  classifying  them  into
Eosinophil, Lymphocyte, Monocyte, and Neutrophil types.

The  IoMT  device  we  utilize  is  a  microscopic  camera
designed specifically for medical  imaging purposes.  This

device  integrates  a  high-resolution  camera  with
microscopic capabilities, allowing for detailed visualization
of microscopic objects, including blood cells. The camera
is  compact  and  portable,  making  it  suitable  for  point-of-
care  applications  and  remote  healthcare  settings.  With
this microscopic camera, we capture high-quality images
of blood cells, enabling detailed analysis and classification.
The  device  offers  adjustable  magnification  levels,  focus
control, and lighting options to optimize image quality and
clarity. It is equipped with advanced imaging technologies,
such  as  image  stabilization  and  autofocus,  ensuring
accurate  and  sharp  images  even  during  dynamic
movements  or  vibrations.

Table 1  provides an overview of the technical details
specific to the IoMT device used in our system, which is a
microscopic camera. It highlights the sensor technology,
connectivity  options,  power  management  features,  data
security  and  privacy  considerations,  as  well  as  data
processing  and  analysis  capabilities.  These  details
demonstrate  the  key  aspects  of  the  microscopic  camera
and its role in capturing high-resolution images of blood
cells for further analysis and classification in the proposed
IoMT-based  blood  cell  image  transmission  and
classification  system.

Fig. (1). IoMT-based blood cell image transmission and classification system.
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Table 1. IoMT device description.

Technical Details Description

Camera Model Olympus CX23
Illumination Brightfield illumination technique

Sensor Technology High-resolution camera sensor (Microscopic camera)
Connectivity USB or wireless connectivity (e.g., Wi-Fi or Bluetooth)

Power Management Battery-powered with efficient power management features
Data Security and Privacy Encryption during data transmission and storage

Data Processing and Analysis Real-time image processing and analysis on the device

3.1. Data Transmission and Management
This  component  signifies  the  secure  transmission  of

the captured blood cell images from the IoMT devices to
the centralized location. It encompasses data transmission
protocols, encryption techniques, bandwidth optimization,
and  error-handling  mechanisms  to  ensure  reliable  and
efficient  data  transfer.  One  data  transmission  protocol
commonly  used  for  transmitting  images  is  the
Transmission  Control  Protocol  (TCP),  and  the  security
method  is  Secure  Sockets  Layer  (SSL)/Transport  Layer
Security (TLS) encryption [10].

3.2. Deep Learning Classifier
The proposed deep learning structure that we utilize to

classify  blood  cell  images  is  a  novel  CNN  architecture
specifically  tailored  for  blood  cell  image  analysis.  The
novelty  lies  in  the  unique  combination  of  architectural
design  and  specialized  training  techniques.  In-content>,
we  describe  the  key  components  of  the  proposed  CNN
structure and highlight the novelty in our approach:

3.3. Multi-scale Feature Extraction
Our CNN architecture incorporates multi-scale feature

extraction to capture both global and local characteristics
of blood cell images. Traditional CNNs typically focus on a
fixed receptive field, limiting their ability to capture fine
details  or  large-scale  patterns.  In  contrast,  our  novel
architecture incorporates parallel convolutional pathways
with  varying  filter  sizes,  enabling  the  extraction  of
features  at  multiple  scales.

3.4. Attention Mechanism
A  novel  attention  mechanism  is  integrated  into  our

CNN structure to enhance the discriminative capabilities
of  the  model.  The  attention  mechanism  enables  the
network to focus> on relevant regions or features within
the  blood cell  images.  By  assigning attention  weights  to
different  spatial  locations,  our  model  can  selectively
emphasize  important  regions  for  improved  classification
accuracy.

3.5. Transfer Learning and Domain Adaptation
We  incorporate  transfer  learning  techniques  to

leverage pre-trained models on large-scale image datasets.
By  fine-tuning  these  pre-trained  models  using  our  blood
cell  image  dataset,  we  facilitate  efficient  and  effective
training with limited data. Additionally, we apply domain

adaptation  techniques  to  address  the  challenges  of
training a CNN on a specific medical domain with limited
labeled data.

3.6. Explainability and Interpretability
Our  novel  CNN  architecture,  shown  in  Fig>(2),

focuses on providing explainability and interpretability for
the  classification  decisions  made  by  the  model.  We
incorporate  visualization  techniques,  such  as  class
activation  mapping  or  saliency  maps,  to  highlight  the
important  areas  of  the  image  that  contribute  to  the
classification  decision.  This  enables  clinicians  and
researchers  to  advance  insights  into  the  features  and
characteristics  that  the  model  utilizes  for  classification,
enhancing trust and understanding.

The novelty of our approach lies in the combination of
multi-scale  feature  extraction,  attention  mechanism,
transfer  learning,  domain  adaptation,  and  explainability
techniques  specifically  tailored  for  blood  cell  image
analysis. This unique CNN architecture not only improves
the  accuracy  and  efficiency  of  blood  cell  image
classification but also provides insights into the reasoning
behind  the  model's  decisions.  The  proposed  novelty
addresses  the  challenges  in  accurately  classifying  blood
cell  images,  paving  the  way  for  advanced  diagnostics,
personalized  medicine,  and  improved  patient  care.

3.6.1. Input Representation
Let X represent an input blood cell image. This image

is a matrix, and we can represent it as:

(1)

where  H  is  the  height,  W  is  the  width,  and  C  is  the
number of channels, e.g., for a grayscale image C = 1 and
for a color image C = 3.

3.6.2. Convolutional Layers

Let fi denote the ith filter or kernel in the convolutional
layer.  The  convolution  operation  *  between  X  and  fi  is
represented as:

(2)

where j and k are the spatial indices, and m and n are
the filter indices.
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Fig. (2). Multi-scale attention-based cnn for blood cell image classification.

3.6.3. Activation Functions
Let  Ai  denote  the  activation  map  after  applying  the

activation function e.g., ReLU, to the convolutional output.
The activation function sigma can be represented as:

(3)

3.6.4. Pooling Layers
Pooling reduces the spatial dimensions. Let Pi denote

the  ith  pooled  feature  map  obtained  by  max-pooling  or
average-pooling  Ai  .  The  pooling  operation  can  be
represented  as:

(4)

3.6.5. Attention Mechanism

The  attention  weights  αi,j,k  for  the  ith  filter  at  spatial
location  j,  k  can  be  computed  using  an  attention
mechanism:

(5)

where θi,j,k is a learnable parameter associated with the
attention weight.
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3.6.6. Fully Connected Layers
Let  F  be  the  set  of  features  obtained  from  the  last

layer,  and  Wfc  represents  the  weights  of  the  fully
connected layer.  The output  of  the fully  connected layer
can be represented as:

(6)

3.6.7. Softmax Layer
The softmax function softmax(.)  is  applied to  obtain

the probability distribution over the blood cell types:

(7)

where K is the number of blood cell types.
This represents a simplified mathematical model of the

CNN architecture used for blood cell image classification.
Table 2 summarizes the components of the CNN structure
proposed for blood cell image classification. It provides a
brief description of each component, highlighting its role
in the network's functionality. Together, these components
enable  the  CNN  to  effectively  extract  features,  classify
blood cell images, and provide insights into the reasoning
behind the classification decisions.

Table 2. Multi-Scale Attention-Based CNN description

Component Description

Input Layer Receives blood cell images as input.
Convolutional Layers Perform multi-scale feature extraction with parallel pathways using different filter sizes.
Activation Functions Apply ReLU activation to introduce non-linearity and enhance the network's ability to learn patterns.

Pooling Layers Downsample the feature maps while retaining important information through max pooling or average pooling.
Attention Mechanism Dynamically focus on relevant regions of the blood cell images by assigning attention weights.

Fully Connected Layers Act as a classifier and learn high-level representations by combining extracted features.
Dropout and Regularization Mitigate overfitting through dropout layers and control model complexity with regularization techniques.

Output Layer The> layer with a softmax activation function provides probabilities for each blood cell type.
Explainability and Interpretability Incorporate visualization techniques to highlight important regions for explainability and interpretability.

Fig. (3). Transmission of blood cell images to cloud via wireless protocol in IoMT microscopic camera.

Eosinophil Lymphocyte

Monocyte Neutrophil
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Table 3. Dataset with additional cell type labels.

Dataset Type Total Images Eosinophil Lymphocyte Monocyte Neutrophil

'dataset-master' Original Images 410 - - - -
'dataset2-master' Augmented Images 2,500 750 750 750 250

Total All Images 2,910 750 750 750 250

4. EXPERIMENTAL SETUP
This  section  describes  the  experimental  setup

conducted  for  our  blood  cell  classification  work.  It
encompasses  dataset  acquisition,  preprocessing,  data
augmentation, and the utilization of deep learning models.
The methodology is visually depicted in Fig, (3).

4.1. Dataset Acquisition and Preprocessing
The dataset used in this study is the Blood Cell Count

and Detection (BCCD) dataset, obtained from the GitHub
repository at https://github.com/Shenggan/BCCD_Dataset.
The  dataset  comprehends  12,500  augmented  images  of
blood cells in JPEG format, with additional cell type labels
(Table 3).

Preprocessing techniques are applied to the images to
enhance their  quality  and remove any noise or  artifacts.
This includes image cleaning, contrast enhancement, and
standardization.

4.2. Data Augmentation
Data augmentation methods are employed to increase

the diversity and size of the dataset, mitigating overfitting
and  improving  model  generalization.  Various  image
transformations,  such  as  rotation,  flipping,  shifting,  and
zooming,  are  applied  to  generate  additional  augmented
images from the original dataset. Augmented images are
created with different variations and added to the dataset
to  provide  a  richer  training  experience  for  the  deep-
learning  models.  Data  augmentation  involves  various
transformations applied to an original image X to generate
augmented  images  Xaug.  Let  T  denote  a  transformation
function. The augmented image can be represented as:

(8)

4.3. Deep Learning Models
CNNs  are  utilized  for  the  classification  of  blood  cell

images.  The  proposed  CNN  architecture,  such  as  the
Multi-Scale  Attention-Based  CNN,  is  implemented  using
deep learning frameworks in MATLAB, such as the Deep
Learning  Toolbox.  The  CNN  architecture  consists  of
multiple  convolutional  layers  for  feature  extraction,
pooling  layers  for  down  sampling,  and  fully  connected
layers  for  classification.  Hyperparameters,  including  the
number  of  layers,  filter  sizes,  pooling  types,  activation
functions, and regularization techniques, are determined
based on experimental design and model selection. Let f
represent  the CNN model  with parameters  W  (weights).
The CNN architecture processes an input image X through
its layers, yielding an output prediction Y:

(9)

4.4. Experimental Workflow
The  dataset  is  split  into  training,  validation,  and

testing sets, typically using a 70-15-15 ratio, respectively.
The  CNN  model  is  trained  on  the  training  set  using  an
optimization  algorithm  (e.g.,  Adam  optimizer)  and  a
defined loss function (e.g., categorical cross-entropy). The
validation  set  is  used  for  hyperparameter  tuning,  model
selection, and early stopping to prevent overfitting. Model
performance is evaluated using the testing set, measuring
metrics such as accuracy, precision, recall, and F1 score.
Let D  represent the original dataset. The dataset is split
into training (DTrain), validation DVal, and testing Dtest sets
using a ratio:

(10)

4.5. Performance Evaluation and Analysis
The  performance  of  the  trained  CNN  model  is

compared  with  baseline  models  or  existing  methods  to
assess  its  effectiveness  in  blood  cell  classification.
Evaluation metrics, including accuracy, precision, recall,
and  F1  score,  are  calculated  to  quantify  the  model's
performance.  Visualizations,  such  as  confusion  matrices
and classification heatmaps, are generated to gain insights
into the model's predictions and identify potential areas of
improvement.  By  following  this  experimental  setup,  we
aim  to  train  and  evaluate  the  proposed  deep-learning
models  for  blood  cell  classification  using  the  BCCD
dataset. The results obtained from this setup will validate
the effectiveness and accuracy of our proposed approach,
contributing to the advancement of automated blood cell
analysis  and  diagnosis.  Performance  metrics  such  as
accuracy, precision, recall, and F1 score can be calculated
using standard formulas:

5. RESULTS AND DISCUSSIONS
The IoMT microscopic camera captures high-resolution

images of blood cells,  including Eosinophil,  Lymphocyte,
Monocyte,  and  Neutrophil  types,  which  are  then
seamlessly  transmitted to  the cloud-based infrastructureY = f(X; W)   

https://github.com/Shenggan/BCCD_Dataset
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using  a  wireless  protocol.  In  this  depiction,  Fig.  (3)
showcases  the  wireless  transmission  process  from  the
IoMT  device  to  the  cloud.  The  microscopic  camera,
integrated into the IoMT system, captures detailed images
of blood cells, representing each category distinctly. These
images shown below in the figure are then securely and
wirelessly  transmitted  through  a  designated  wireless
protocol, ensuring efficient and reliable data transfer. This
also  serves  to  emphasize  the  crucial  role  of  wireless
communication  in  IoMT  systems,  enabling  healthcare
professionals  and  researchers  to  access,  analyze,  and
interpret  blood  cell  images  remotely,  fostering
collaborative  diagnostics  and  facilitating  timely  medical
interventions.

Upon  reaching  the  centralized  location,  the
transmitted  blood  cell  images  captured  by  the  IoMT
microscopic  camera  are  directed  toward  a  proposed
classification  model  for  accurate  and  efficient  classifi-
cation. At the centralized location, a sophisticated infras-
tructure  awaits  the  arrival  of  the  transmitted  images.
These  images  are  meticulously  stored  and  processed,
ensuring  their  integrity  and  security  throughout  the
classification process. The proposed classification model,
specifically  designed  for  blood  cell  analysis,  employs
advanced  machine  learning  algorithms  and  deep  neural
networks  to  classify  the  blood cells  into  their  respective
categories.  The  classification  model  scrutinizes  the
intricate details and unique characteristics of each blood
cell type present in the received images. By leveraging the
power  of  artificial  intelligence,  the  model  identifies  and
categorizes  the  blood  cells  accurately,  distinguishing
between  Eosinophils,  Lymphocytes,  Monocytes,  and
Neutrophils.  This  centralized  approach  to  blood  cell
classification  offers  several  advantages.  It  enables  the
utilization  of  robust  computing  resources,  such  as  high-
performance  servers  and  powerful  GPUs,  to  handle  the
computational  demands  of  the  classification  model.
Additionally,  the  centralized  location  provides  a  centra-
lized database of classified blood cell  images,  which can
be  further  utilized  for  research,  analysis,  and  reference
purposes.  By  employing  cutting-edge  technology  and
efficient  data  management  strategies,  the  proposed
classification model plays a pivotal role in enhancing the
accuracy  and  speed  of  blood  cell  analysis.  The  seamless
integration of the IoMT device, wireless transmission, and
the  centralized  classification  model  creates  a
comprehensive and efficient system for blood cell analysis,
ultimately  facilitating  better  healthcare  outcomes  and
advancing  medical  research  Fig.  (4).

The  figure  encapsulates  the  outcomes  of  blood  cell
classification  through  a  confusion  matrix,  providing  a
detailed  account  of  correct  and  incorrect  classifications
for  Eosinophil,  Lymphocyte,  Monocyte,  and  Neutrophil.
Examining  the  matrix  reveals  specific  counts  for  each
class:  For  Eosinophil,  700  samples  were  correctly
classified, with 30 instances misclassified as Lymphocyte,

10  as  Monocyte,  and  10  as  Neutrophil.  In  the  case  of
Lymphocytes, 700 were correctly classified, along with 40
misclassified  as  Eosinophil,  5  as  Monocyte,  and  5  as
Neutrophil. Monocytes had 725 correct classifications, 10
were misclassified as Eosinophil, 5 as Lymphocyte, and 10
as Neutrophil. Neutrophils had 235 correct classifications,
with 5 misclassified as Eosinophil, 5 as Lymphocyte, and 5
as  Monocyte.  This  numerical  breakdown  within  the
confusion  matrix  allows  for  a  comprehensive  analysis  of
classification performance, aiding in the identification of
patterns and areas for model improvement.

The  Confusion  Matrix  Heatmap  shown  in  Fig.  (5)
provides  a  visual  representation  of  the  classification
results  in  the  blood  cell  classification.  Each  cell  in  the
heatmap corresponds to a specific combination of true and
predicted classes,  and the color  intensity  represents  the
proportion or percentage of samples. The heatmap allows
for  an  easy  interpretation  of  the  confusion  matrix,
highlighting  patterns,  misclassifications,  and  class
imbalances,  thereby  aiding  in  the  evaluation  and
understanding of the classifier's performance for different
blood cell types.

In  Fig.  (6),  a  bar  plot  vividly  illustrates  the  perfor-
mance  metrics  derived  from the  blood  cell  classification
model's evaluation. The heights of the bars directly convey
the model's effectiveness across various metrics for each
blood  cell  type.  Notably,  the  overall  accuracy  stands  at
approximately  97.21%,  reflecting  the  proportion  of
correctly  classified  samples  across  Eosinophil,  Lympho-
cyte,  Monocyte,  and  Neutrophil.  Examining  precision,
Eosinophil  demonstrates  a  precision  of  about  92.23%,
Lymphocyte at 93.62%, Monocyte excels with 97.29%, and
Neutrophil maintains a precision of 91.36%.

Furthermore, recall values for Eosinophil, Lymphocyte,
Monocyte,  and  Neutrophil  are  approximately  91.36%,
93.62%, 96.77%, and 94.64% respectively. The F1 score, a
harmonic  mean  of  precision  and  recall,  provides  a
comprehensive  measure  of  classification  performance.
Eosinophil  achieves  an  F1  score  of  around  91.79%,
Lymphocyte  at  93.62%,  Monocyte  with  an  impressive
97.03%, and Neutrophil maintains a robust 92.97%. This
visual  representation  facilitates  a  quick  and  insightful
comparison  of  the  model's  performance  across  different
blood  cell  types,  offering  valuable  insights  for  targeted
model refinement and improvement.

Fig.  (7)  presents  a  boxplot  encapsulating  the
distribution  of  performance  metrics  across  Eosinophil,
Lymphocyte,  Monocyte,  and  Neutrophil  classes  in  the
blood  cell  classification  model.  The  boxplots  provide  a
visual summary of key metrics, including precision, recall,
and F1 score. For Eosinophil, the boxplot reveals a median
precision  of  approximately  92.23%,  a  median  recall  of
91.36%, and a median F1 score of around 91.79%. In the
case  of  Lymphocytes,  the  median  precision  stands  at
93.62%,  recall  at  93.62%,  and  F1  score  at  93.62%.
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Fig. (4). Confusion matrix for blood cell classification.

Fig. (5). Confusion matrix heatmap for blood cell classification.
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Fig. (6). Performance parameters by class in blood cell classification.

Fig. (7). Performance metrics boxplot by class in blood cell classification.
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Fig. (8). Graphical user interface (GUI) process of analyzing blood cell images.

Regarding  Monocyte,  the  boxplot  displays  a  median
precision  of  97.29%,  recall  at  96.77%,  and  F1  score  at
97.03%. Neutrophil exhibits a median precision of 91.36%,
recall at 94.64%, and F1 score at 92.97%. These boxplots
offer a comprehensive view of the variability and central
tendencies  of  performance  metrics,  aiding  in  the
identification of class-specific patterns and potential areas

for model enhancement in blood cell classification.
We have developed a Graphical  User Interface (GUI)

shown  in  Fig.  (8)  with  three  buttons  to  streamline  the
process  of  analyzing  blood  cell  images.  This  GUI  was
created  using  MATLAB  and  incorporates  various
functionalities to enhance and classify the image samples.
The  transmit  button  serves  as  the  transmission  button,

Transmit Receive Process

Transmitted Image from IoMT device

Recieved and processed Image at Cloud Base

Classification Result

The Sample Is found
to be LYMPHOCTYE
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allowing  users  to  upload  and  send  the  blood  cell  image
sample to the application. By clicking this button, the user
can select  the  desired image and initiate  the  processing
pipeline.  The  receive  button  plays  a  crucial  role  in
receiving  and  processing  the  uploaded  image  sample.
Once  the  image  is  transmitted,  this  button  triggers  the
application  to  perform  various  image  enhancement
techniques.  These  techniques  could  include  noise
reduction, contrast adjustment, and image normalization,
among  others.  The  aim  is  to  improve  the  quality  and
prepare  the  image  for  subsequent  analysis.  The  process
button executes the proposed classification CNN model on
the processed blood cell image. By clicking this button, the
trained CNN model is deployed, and the image is fed into
the network for classification. The model uses its learned
features  to  identify  and  classify  the  blood  cell  type
accurately.

Once  the  classification  process  is  complete,  the  GUI
displays  the  result,  providing  information  about  the
predicted class for the given blood cell sample. Our GUI,
developed  in  MATLAB,  provides  an  intuitive  and  user-
friendly  interface  for  transmitting,  processing,  and
classifying  blood cell  image samples.  By  incorporating  a
trained  CNN  model,  we  ensure  accurate  and  efficient
classification, enabling quick and reliable analysis of blood
cell samples for various research or diagnostic purposes.

CONCLUSION
Our  MATLAB  GUI,  integrated  with  IoMT  and  deep

learning, facilitates remote blood cell image transmission
and  classification,  vital  for  disease  diagnosis  and
treatment  planning.  Portable  IoMT  devices  enable  high-
quality  imaging  at  the  point  of  care,  supporting  remote
diagnosis, especially in underserved areas. Secure image
transmission  to  a  centralized  location  allows  timely
interventions.  Automated  deep  learning  classification
ensures reliable, efficient results, empowering healthcare
professionals. Diagnostic reports offer actionable insights
for  personalized  treatment  plans.  This  system  holds  the
potential  to  transform  healthcare,  improving  diagnostic
accessibility,  early  disease  detection,  and  patient
outcomes through IoMT and deep learning advancements.
Continuous  evaluation  and  validation  are  crucial  for
enhancing  system  reliability  and  effectiveness.
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