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Abstract:
Introduction:  Obesity  is  a  prevalent  and  multifaceted  health  hazard  globally,  necessitating  effective  predictive
models to mitigate its impact on chronic diseases.

Methods:  This  paper  introduces  the Protein  Food Item Prediction Regression (PIPR)  model,  employing machine
learning  techniques  to  analyze  the  influence  of  protein-rich  foods  on  obesity.  The  model  undergoes  rigorous
preprocessing and iterative refinement to identify correlated variables and predict obesity trends.

Results: The PIPR model demonstrates superior performance in predicting obesity trends, showcasing lower error
rates  and high adjusted R2  values.  For  instance,  for  the  most  correlated  variables  like  Meat  and Milk  (including
butter), the model exhibits impressive performance with an MSE of 49.59, RMSE of 7.04, MAE of 5.08, and MAPE of
29%. Similarly, for the least correlated variables like oil crops and vegetable products, the PIPR model maintains
excellence with an MSE of 52.51, RMSE of 7.24, MAE of 5.39, and MAPE of 31%.

Conclusion: The PIPR model emerges as a promising tool for understanding and addressing obesity's complexities,
offering valuable insights into dietary patterns and potential interventions. Further research and validation could
enhance its applicability and effectiveness in combating obesity on a global scale.
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1. INTRODUCTION
Obesity  has  emerged  as  a  significant  global  health

concern  in  recent  years,  primarily  stemming  from  an
abnormal accumulation of body fat. Factors contributing to
this issue include a preference for fast food, consumption of
unhealthy foods, and prolonged sedentary lifestyles. Obesity
is largely a consequence of excessive caloric intake coupled
with insufficient physical activity. Overconsumption of high-
carbohydrate, high-fat foods results in surplus energy being

stored  as  fat  within  the  body.  Despite  the  severe  health
implications associated with obesity, such as increased risk
of liver cancer, type 2 diabetes, heart disease, osteoarthritis,
stroke,  respiratory  issues,  and  heightened  morbidity  and
mortality  rates  [1,  2],  many  individuals  are  apathetic
towards their obesity, often misunderstanding it as a sign of
good health. Obesity is a complex medical condition with far-
reaching  consequences.  While  therapeutic  interventions
have shown success in treating certain cases of obesity [3],
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global  efforts  aimed  at  altering  dietary  habits,  increasing
physical  activity,  and  improving  nutritional  intake  have
demonstrated  some  effectiveness  [4].

In  a  study  [5],  the  examination  of  bias  in  facial
analysis-based  BMI  prediction  models  sheds  light  on
potential  disparities.  A  machine  learning  approach  is
presented  for  predicting  obesity  risk,  contributing  to
personalized healthcare strategies [6]. The classification of
obesity among South African female adolescents, compar-
ing logistic regression and random forest algorithms [7].
In  another  study  [8],  they  discussed  practical  consi-
derations  in  predicting  childhood  obesity  using  machine
learning, emphasizing the need for tailored interventions.
These  studies  collectively  advance  our  understanding  of
obesity  prediction  and  management  through  diverse
methodological  approaches.  Thermal  imaging  and  deep
learning  techniques  are  explored  for  computer-assisted
screening of child obesity, offering insights into fat-based
studies  [8],  and  a  hybrid  machine  learning  model  for
estimating  obesity  levels  is  presented,  showcasing
innovations  in  data  management  and  analytics  [9].  In
another study [10], machine learning and electronic health
record data are utilized to predict early childhood obesity,
showcasing  advancements  in  predictive  analytics  for
healthcare.  Machine  learning  methods  are  employed  to
characterize  the  obesogenic  urban  exposome,  shedding
light on environmental factors influencing obesity [11].

Statistics  from  2016  reveal  that  over  650  million
people were obese, with 39% of adults aged 18 and above
categorized  as  overweight  and  13%  classified  as  obese.
The amount of protein in one's diet is recognized as one of
the  leading  causes  of  obesity.  This  paper  seeks  to
investigate both the protein-rich foods that contribute to
obesity  and  those  that  may  aid  in  its  prevention.  The
primary objective involves predicting the impact of protein
content  on  obesity  utilizing  the  PIPR  machine  learning
model.  The  study  is  divided  into  two  segments:  one
examining  the  influence  of  protein-rich  foods  on  obesity
and  the  other  identifying  foods  potentially  beneficial  in
reducing  obesity.  The  initial  steps  involve  data
preprocessing  and  feature  selection.  Subsequently,  a
regression  algorithm  is  employed  to  assess  key  metrics
such as MSE, RMSE, MAE, MAPE, AIC, and BIC derived
from  the  PIPR  trained  model.  The  dataset  utilized  in
constructing the model comprises food diet data collected
during the COVID-19 pandemic.

Amidst the COVID-19 pandemic, a predominant focus
in  recent  research  has  been  on  healthcare  [12].  One
critical  issue  demanding  attention  is  obesity,  a  medical
condition  significantly  amplifying  the  susceptibility  to
various  diseases  and  health  complications  such  as  heart
disease,  diabetes,  high  blood  pressure,  specific  cancers,
and  even  COVID-19  itself  [13].  This  section  discusses
several research endeavors concerning obesity prediction
utilizing machine learning algorithms.

The  study  proposes  a  machine  learning-based
approach for forecasting obesity risk [14], employing nine
established  machine  learning  algorithms.  These
algorithms encompass k-nearest neighbor, random forest,

logistic  regression  (LR),  multilayer  perceptron,  support
vector  machine,  naive  Bayes  (NB),  adaptive  boosting
(ADA),  decision  tree,  and  gradient  boosting.  The  study
evaluates  the  effectiveness  of  each  classifier  using
performance  metrics  and  delineates  obesity  levels-high,
medium,  and  low-based  on  experimental  outcomes.
Particularly, logistic regression demonstrated the highest
accuracy  at  97.09%,  while  gradient  boosting  (GB)
exhibited the lowest  accuracy of  64.08%, along with the
least favorable metric values. The study primarily focused
on  classifying  obesity  levels  using  classification
algorithms. Moreover, in a separate investigation linking
dietary  habits  to  COVID-19  mortality  rates,  machine
learning  algorithms  were  employed  to  estimate  country-
level  mortality  rates  [2].  This  research  examined  the
relationship  between  23  food  habits  and  mortality  rates
across  170  countries.  The  findings  highlighted  a  preva-
lence  of  obesity  and  high-fat  consumption  in  countries
with  elevated  death  rates,  contrasting  with  countries
exhibiting  lower  death  rates  that  demonstrated  higher
cereal  consumption  patterns.

In a study [3], a machine learning ensemble algorithm
is  applied  to  forecast  obesity,  achieving  an  accuracy  of
89.68%. Subsequent research has highlighted the poten-
tial for employing additional machine learning models in
such predictions. Furthermore, a study [4] introduces an
enhanced  predictive  analysis  for  malnutrition  disease
utilizing regression algorithms. Diagnosing malnutrition in
patients  presents  significant  challenges  for  healthcare
professionals. This study conducts a comparative assess-
ment  of  classifiers  using  the  WEKA  tool  to  enhance
classification accuracy. Results from this investigation on
the  malnutrition  dataset  reveal  that,  in  terms  of
prediction,  the  linear  regression  technique  outperforms
other  regression  algorithms  like  k-nearest  neighbor,
decision  tree,  and  multilayer  perceptron  in  terms  of
prediction,  efficiency,  and  accuracy  on  the  malnutrition
dataset.

In  recent  times,  machine  learning  has  showcased  its
versatility  across  numerous  domains  such  as  predictive
analysis, healthcare, medical imaging, sentiment analysis,
among  others.  Satvik  Garg  et  al.  [13]  have  presented  a
framework designed to train models for predicting levels
of obesity, body weight, and fat percentage by leveraging
various  characteristics.  This  framework  incorporates
machine learning algorithms like random forest, decision
tree,  XGBoost,  Extra  Trees,  and  KNN.  The  study  inves-
tigates  diverse  hyperparameter  optimization  stra-tegies,
including  evolutionary  algorithm,  random  search,  grid
search, and optuna, in an effort to enhance the accuracy of
these  models.  The  objective  is  to  optimize  the  models'
predictive  performance  regarding  obesity  levels,  body
weight,  and  fat  percentage  through  the  utilization  of
distinct  hyperparameter  optimization  techniques.

To  address  the  global  epidemic  of  obesity  and  assist
individuals  and  healthcare  professionals  in  identifying
obesity  levels,  the  research  on  estimating  obesity  levels
through  computational  intelligence  [15]  formulates  an
intelligent method employing data mining algorithms. The
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primary data source for this study consisted of university
students aged 18 to 25 from Colombia, Mexico, and Peru.
This  research  utilizes  a  dataset  to  explore  associations
between  factors  such  as  high  caloric  intake,  decreased
energy  expenditure  due  to  reduced  physical  activity,
gastrointestinal  ailments,  genetic  predispositions,
socioeconomic elements, and/or psychological conditions
like anxiety and depression. The study involved a sample
of  178  students,  comprising  81  males  and  97  females,
drawn  from  the  specified  dataset.

Bum Ju Lee et al. [16] introduced a novel approach for
predicting  normal,  overweight,  and  obese  classes  based
solely on voice features linked to Body Mass Index (BMI)
status,  independent  of  traditional  weight  and  height
measurements. This innovative method holds promise for
enhancing  medical  applications  like  telemedicine,
emergency medical services, and continuous monitoring of
long-term patients with BMI-related chronic illnesses. The
research  also  outlines  discriminatory  features  obtained
from statistical analysis of voice characteristics and BMI
status across varying age and gender categories. Through
the  intersection  of  security  technology,  automation,
forensics, and health science, efforts are made to identify
an  optimized  set  of  discriminatory  voice  features.
However,  this  pursuit  leads  to  increased  computational
complexity,  aiming  for  improved  accuracy  in  voice
recognition.

The cited report [1] investigated childhood and adult
obesity concerns by utilizing datasets to extract features,
forecast potential causes, and conduct in-depth analyses of
obesity.  Employing  neural  networks,  a  specialized
investigation  using  diffusion  tensor  imaging  aimed  to
determine  neural  control  associated  with  body  fat,  BMI,
waist, and hip ratio circumference among obese patients.
In efforts to predict both present and future obesity causes
through  machine  learning  (ML),  the  report  explores  a
range  of  algorithms  including  Decision  Trees,  Support
Vector Machines, Random Forest (RF), Gradient Boosting
Machines,  Least  Absolute  Shrinkage  and  Selection
Operator  (LASSO),  Batch-Normalization  (BN),  and
Artificial  Neural  Networks  (ANN).  These  algorithms  are

examined  concerning  datasets  that  implement  the
aforementioned techniques, highlighting their relevance in
obesity  prediction.  Moreover,  the  report  consolidates
insights  from  the  theoretical  literature  contributed  by
machine learning and bioinformatics experts. It culminates
in  offering  recommendations  on  advancing  ML
methodologies  for  enhanced  predictive  modeling  of
obesity  and  other  chronic  diseases.

According to Yong et al. [17], BMI and waist-hip ratio
have been associated with obesity. They employed linear
and logistic regression, as well as ROC curves, to analyze
the epidemiological variables of BMI, waist circumference
(WC),  and  waist-hip  ratio  (WHR).  This  study  utilizes
classification  algorithms  to  forecast  the  presence  of
various  risk  factors  linked  to  obesity.  Specifically,  it
explores  a  machine  learning  technique  for  creating  a
predictive model to identify individuals who are obese or
overweight [14, 18]. The model was developed using data
sourced  from  physical  conditions  and  dietary  habits.
Moreover,  the  paper  assesses  several  machine  learning
classification  algorithms,  including  decision  tree  (DT),
SVM, KNN, Gaussian, naive Bayes, multilayer perceptron,
random forests, gradient boosting, and extreme gradient
boosting. Its focus lies exclusively on the identification of
obese individuals.

In this study [19], a machine learning-based model was
developed using single-nucleotide polymorphisms obtained
from  next-generation  sequencing  to  assess  the  risk  of
obesity. The dataset comprised 139 recruited individuals,
including  74  classified  as  obese  and  65  as  non-obese.
SVM,  KNN,  and  the  decision  tree  algorithm  were
employed, with the SVM model demonstrating a specificity
of 63.02%, sensitivity of 80.09%, and accuracy of 70.77%,
outperforming other algorithms. The information used to
construct the model was collected through a survey that
gathered details about the interviewees' dietary habits and
exercise  routines.  It  is  important  to  note  that  the  data
relied on the survey, which introduces variability as survey
responses can differ among individuals and over time. The
predictive  model's  accuracy  depends  on  when  the  data
was collected.

Table 1. Summary of related work on obesity prediction.

Author Name Algorithm Dataset Used Type of ML
Algorithm Metrics Inference

M. Y. Shams et al [ 20 ] SVM COVID 19 Health-Diet
Dataset Regression RMSE Diet Prediction

Faria Ferdowsy et al KNN, SVM, ADA, NB, DT 1100 Collected Data Classification
Accuracy

LR – 97.09%
GB – 64.08%

Obesity – High, Medium
and Low

María Teresa García-
Ordás et al K-means COVID-19 Healthy-Diet

Dataset Clustering - Obesity and Consumption
of Fatty Food Item

Satvik Garg et al RF, DT, XGBoost, Extra
tree and KNN

UCI ML Repository
Dataset Classification RMSE, MAE, MAPE Estimation Obesity Level

Rodolfo Canas
Cervantes et al.

SVM,
K-Means, and Decision

Tree
Data from 178

Participating Students Classification
Precision, Recall,

True Positive Rate,
False-Positive Rate,

ROC
Estimation of Obesity Level

Bum Ju Lee et al. LR and Ensemble
algorithms

Data Collected - 1568
Subjects Classification AUC Classifying as Normal,

Overweight, and Obese
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Author Name Algorithm Dataset Used Type of ML
Algorithm Metrics Inference

Rajdeep Kaur et al [ 21 ] GB, RF, XGBoost, SVM
and KNN

UCI ML Repository
Dataset Classification Accuracy Estimation Obesity Levels

Hsin-Yao Wang et al SVM, KNN, and DT Data from 139 Individuals Classification
Accuracy - 70.77%

Sensitivity- 80.09%,
Specificity-63.02%

Obesity 0052isk

Yong, L et al Classification algorithm Data from 772 Chinese
Subjects Classification ROC Predicts Metabolic Risk

factor
Ronel Sewpaul et al [ 12

] Classification algorithm 375 females Classification Precision, Recall, F1 score Predict Female obesity

In  recent  research,  diverse  machine  learning
approaches have been employed to predict obesity, linking
it to various factors such as dietary habits, mortality rates,
and  physiological  markers  like  BMI  and  genetic  data.
These studies aim to forecast obesity levels and associated
health  risks,  highlighting  the  importance  of  machine
learning  in  addressing  this  global  health  concern.  The
summary  of  the  research  in  Table  1  pertains  to  obesity
prediction.  The  majority  of  the  aforementioned  studies
concentrate solely on employing classification algorithms
to  distinguish  between obese  and  non-obese  individuals.
However, there is currently no existing research dedicated
to identifying protein-rich foods that contribute to obesity
or  mitigate  obesity  through  a  recursion  algorithm.  This
absence  of  investigation  prompted  us  to  create  a  PIPR
model  aimed  at  analyzing  the  impact  of  obesity  using
machine  learning  techniques.

The  motivation  behind  our  proposed  method  lies  in
addressing  the  pressing  global  health  issue  of  obesity.
Given its multifactorial nature and significant contribution
to  chronic  diseases,  there  is  a  critical  need for  effective
predictive models to understand and mitigate its impact.
Our  approach,  the  Protein  Food  Item  Prediction
Regression (PIPR) model, innovatively leverages machine
learning  techniques  to  analyze  the  influence  of  protein-
rich foods on obesity trends, offering valuable insights for
personalized nutrition and public health interventions.

The contribution of  this  research work is  outlined as
follows:

The  motivation  for  the  proposed  method  is  given  in
Section I.
Highlighting  the  significance  of  protein-rich  foods  in
influencing obesity within the proposed model is given in
Section II.
Utilizing  MLR-based  analysis  to  discover  the  most  and
least correlated food items is given in Section II.
Creating  regression  models  that  exceeded  the
performance of the PIPR model is given in sections II and
III.
Selecting  the  optimal  model  based  on  comprehensive
evaluation metrics is given in Section III.
Providing  actionable  results  from the  model  to  suggest
protein-rich  foods  that  have  an  impact  on  obesity  was
given in Section III.

2. METHODOLOGY
2.1. Dataset Description

The USDA (United States Department of Agriculture)
Center for Nutrition Policy and Promotion recommends a
daily diet intake guideline of 30% grains, 40% vegetables,
10% fruits,  and  20% protein.  For  this  research,  publicly
available  data  from  https://www.kaggle.com/datasets
/mariaren/Covid19-Healthy-Diet-Dataset [5] was utilized to
construct the regression model. This dataset encompasses
information  regarding  various  food  types,  global  obesity
and  undernutrition  rates,  and  global  COVID-19  cases
across  170  countries.  The  aim  was  to  investigate  how
adopting a healthy dietary pattern could potentially aid in
combating the coronavirus and addressing obesity.

Table 2. Protein rich food items in dataset.

S. No. Categories Items

1. Alcoholic beverages Alcohol, Non-Food; Beer; Beverages, Alcoholic
2. Animal fats Butter, Ghee; Cream; Fats, Animals, Raw; Fish
3. Animal products Aquatic Animals, Others; Aquatic Plants; Bovin
4. Aquatic products Aquatic Animals, Others; Aquatic Plants; Meat
5. Cereals excluding beer Barley and products; Cereals, Other; Maize
6. Eggs Eggs
7. Fish, Seafood Cephalopods; Crustaceans; Demersal Fish; Fresh
8. Fruits excluding wine Apples and products; Bananas; Citrus
9. Meat Bovine Meat; Meat, Other; Mutton & Goat Meat
10. Milk Including butter Milk Including Butter
11. Miscellaneous Infant food; Miscellaneous
12. Offals Offals, Edible
13. Oil crops Coconuts - Incl Copra; Cottonseed; Groundnuts

(Table 1) contd.....

https://www.kaggle.com/datasets/mariaren/Covid19-Healthy-Diet-Dataset
https://www.kaggle.com/datasets/mariaren/Covid19-Healthy-Diet-Dataset
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S. No. Categories Items

14. Pulses Beans; Peas; Pulses, Other and products
15. Spices Cloves; Pepper; Pimento; Spices, Other
16. Starchy Roots Cassava and products; Potatoes and products
17. Stimulants Cocoa Beans and products; Coffee and products
18. Sugar & Sweeteners Honey; Sugar (Raw Equivalent)
19. Sugar Crops Sugar beet; Sugar cane
20. Treenuts Nuts and products
21. Vegetable oils Coconut Oil; Cottonseed Oil; Groundnut Oil
22. Vegetables Onions; Tomatoes and products; Vegetables
23. Vegetal products Alcohol, Non-Food; Apples and products; Banana

The dataset includes data on food intake percentages
(in  kilograms),  energy  intake  (in  kilocalories),  fat  intake
(%),  and  protein  intake  (%)  from  diverse  food  items.
Specifically,  this  research  focused  on  predicting  obesity
based  on  protein  food  item  analysis.  Among  the  170
countries,  169  were  considered  for  analysis,  excluding
French  Polynesia  due  to  the  absence  of  obesity-related
data. With 169 instances and 31 variables in the dataset,
23 variables were utilized for the obesity analysis, detailed
in Table 2, which describes the protein-intake food items
used. The study emphasizes the significant advantages of

protein-rich  diets  in  weight  management  and  combating
coronavirus.  Protein  intake  has  been  found  beneficial  in
weight control due to its capacity to increase satiety, burn
calories, and influence body composition towards fat-free
body weight. This study seeks to utilize machine learning
algorithms to forecast the protein-rich food items that are
most  and  least  correlated  with  increased  and  decreased
obesity,  respectively.  The  investigation  aims  to  uncover
the impact of nutritious food selections, specifically those
abundant  in  protein,  in  managing  obesity,  combating
coronavirus,  and  diminishing  mortality  rates.

Fig. (1). Outline of the proposed PIPR model.

(Table 2) contd.....

ŷ = β0 + (β1 ∗ x1) + (β2 ∗ x2) + ⋯+ (βn ∗ xn)
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2.2. Outline of the Proposed PIPR Model
The  PIPR  model  employs  a  regression  algorithm  to

forecast protein-rich food items contributing to increased
and  decreased  obesity,  utilizing  evaluation  metrics  as
illustrated  in  Fig.  (1).  The  process  initiates  with  data
preprocessing  and  feature  selection  to  identify  the  most
and least correlated variables. Subsequently, the dataset
is partitioned into training and testing subsets. The model
undergoes  training  through  multiple  iterations,  and  its
performance is assessed using various metrics, ultimately
demonstrating favorable results assessed by the adjusted
R squared value. The model's validity is substantiated by
AIC and BIC values concerning the testing data.  Finally,
evaluation metrics like MSE, RMSE, MAE, and MAPE are
computed to predict the most and least correlated protein-
rich food items.

2.3. Pre-processing - Feature Selection
Real-world data often contains noise,  missing values,

or formats unsuitable for direct  use in machine learning
models.  Data  preprocessing  becomes  essential  to  clean
and  prepare  the  data  for  machine  learning  applications,
thereby  reducing  errors  and  enhancing  model
effectiveness.  In  this  particular  model,  the  collected
dataset undergoes preprocessing to manage missing data
and  assess  correlation  levels  among  attributes.  Many
machine  learning  models  cannot  handle  missing  values;
hence, in this study, these missing values are substituted
with mean values to address this issue. Once the missing
values  are  replaced,  feature  selection  techniques  are
applied to identify the most impactful features capable of

enhancing  model  performance.  Correlation  analysis,
specifically  using  methods  like  the  Pearson  Correlation
Coefficient  (PCC),  is  utilized  for  this  research's  feature
selection  process.  The  selected  features  demonstrate
strong  associations  with  the  output  variable  while
maintaining  minimal  associations  among  themselves.  By
employing  independent-dependent  variable  correlations,
this  analysis  identifies  the  variables  exerting  the  most
significant influence on an individual's obesity levels. The
PCC is calculated using Eq. (1).

(1)

In Eq. (1)
r denotes the Pearson Correlation Coefficient
xi and yi denotes the values of the x and y variables
(xi- ) - Variance of x
(xi- ) - Variance of y

 and  - Mean values of the variables x and y

 - Standard Deviation of x

 - Standard Deviation of y
The  algorithm  for  predicting  protein  food  items  is

given  below.
Algorithm for Predicting Protein Food Item using PIPR

Model

r =
∑(xi−x)(yi−y)

√∑(xi−x)
2√∑(yi−y)

2

x

x

y

y

√∑(xi − x)
2

√∑(yi − y)
2

Algorithm for Predicting Protein Food Item using PIPR Model 

Input: Correlated input features selected from Covid19-Healthy-Diet-Dataset: Protein Food Item 

Procedure: 

Start Perform preprocessing of the dataset to ensure no missing data adversely affects subsequent analyses. 

Verify the efficiency of the feature selection process, ensuring the identification of both highly and  

minimally correlated variables.  

Validate the dataset into training and testing subsets for model training and evaluation. 

Build the regression model. 

Calculate the statistical measure  

R, R2, Adjusted R2, and Standard Error                        

Measure the quality of the model using AIC and BIC values. 

𝐀𝐈𝐂 =  − 𝟐 ∗ 𝐥𝐧(𝐥𝐢𝐤𝐞𝐥𝐢𝐡𝐨𝐨𝐝) +  𝟐 ∗ 𝐧𝐩                                                                                                       

𝐁𝐈𝐂 =  − 𝟐 ∗ 𝐥𝐧(𝐥𝐢𝐤𝐞𝐥𝐢𝐡𝐨𝐨𝐝) +  𝐥𝐧(𝐧𝐩) ∗ 𝐬                                                                              

𝐧𝐩 denotes the number of predictors  

s denotes the sample size 

Calculate the evaluation metrics MSE, RMSE, MAE, and MAPE. 

𝐌𝐒𝐄 =
𝟏

𝐧
∑ (𝐲𝐢 − �̂�𝐢 )

𝟐  𝐧
𝐢=𝟏                                                                                                                                 

𝐑𝐌𝐒𝐄 = √
𝟏

𝐧
∑ (𝐲𝐢 − �̂�𝐢 )

𝟐𝐧
𝐢=𝟏                                                                                                                               

MAE=
𝟏

𝐧
∑ |(𝐲𝐢 − �̂�𝐢 )|

𝐧
𝐢=𝟏       
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Table 3. Correlation value for most and least correlated variables.

Most Correlated Variables Least Correlated Variables

Name of the Variables Correlation Value Name of the Variables Correlation Value

Animal products 0.605 Vegetal products -0.369
Meat 0.592 Cereals excluding beer -0.390

Milk including butter 0.479 Pulses -0.451
Eggs 0.430 Oilcrops -0.605

Vegetable oils 0.364 - -

In the correlation analysis conducted, the protein-rich
food items most strongly associated with increased obesity
are animal products, meat, milk (including butter), eggs,
and vegetable oils. Conversely, the least closely correlated
protein-rich  food  items  linked  to  decreased  obesity  are
vegetal products, cereals (excluding beer), pulses, and oil
crops.  Table  3  presents  the  correlation  values
corresponding to these most and least correlated protein
food items.

A  scatterplot  serves  to  explore  the  connections
between  two  variables,  such  as  obesity  and  meat

consumption.  In  a  scatter  plot,  a  positive  association
suggests  that  the  variables  increase  or  decrease
simultaneously, while a negative association implies that if
one  variable  increases,  the  other  decreases,  and  vice
versa. This study involves the analysis and development of
machine  learning  models  to  predict  obesity  using  highly
and minimally associated protein food items. Figs. (2 and
3)  depict  scatter  plots  for  these  correlated  variables,
illustrating  that  as  the  consumption  of  protein-rich  food
items  with  the  strongest  correlation  rises,  so  does  the
level  of  obesity,  and  conversely.
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Models 1, 2, 3, and PIPR are compared. 

10. Predict the final PIPR model as the best model compared to other models. 

11. End 

Output:  

 Multiple Linear Regression - Protein Food Item Prediction Regression (PIPR) Model 

 

 Prediction of protein-rich food items that impact obesity

Fig. 2 contd.....
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Fig. (2). Scatter plot for the most correlated variables.
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Fig. (3). Scatter plot for the least correlated variables.

2.4. PIPR Machine Learning Model Development
After feature selection, the dataset undergoes division

into  training  data  (80%)  and  testing  data  (20%)  for  the
construction  of  the  machine  learning  model.  In  order  to
construct  a  regression  model,  determination  of  the
intercept (βo) and slope (β1) for each predictor variable is

necessary. The proposed Protein Item Prediction Regres-
sion  (PIPR)  model  utilizes  Multiple  Linear  Regression
(MLR) to forecast protein items influencing obesity, emp-
loying  the  regression  equation  derived  from  the  Simple
Linear Regression (SLR) Model represented in matrix form
as (2).
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(2)

In  (2),   represent  the  predicted  values
generated by the model, where β  0 signifies the intercept,
β1  represents  the  slope  coefficient,  and  x1,  x2,  x3  ...  xn

denote the independent variables. These predicted values
are  collectively  represented  as  a  single-column  (n×1)
matrix  Y.

The intercept and slope coefficients are also combined
into a single (2, ×1) column vector.

The  values  of  the  prediction  variable  are  assembled
into a (n × 2) matrix as depicted below.

Eq. (2) is rewritten as

(3)

Eq.  (3)  is  multiplied  by  XT  on  both  sides  to  find  the
slope and intercept as given in (4).

(4)

After multiplying with XT, (2) becomes

(5)

After simplification, (5) becomes

(6)

(7)

The elimination by substitution method is used to solve

(7).  After  finding  the  intercept  and  slope,  the  model  is
fitted with a single predictor using (8).

(8)

The regression equation for  MLR model  uses several
predictor variables to predict the outcome of a response
variable. Extending (8) for several predictor variables, the
regression equation for the MLR model is accomplished as
given in (9).

(9)

where β 0 denotes the intercept, β1, β2, β3, ... βn, denotes
the  slope  coefficient,  and  x1,  x2,  x3,  ...  xn,  denotes  the
predictor  variables.

2.5. Regression Model for Most Correlated Variables
After  the  dataset  splitting,  this  section  encompasses

the development of four MLR Models: MLR Model 1, MLR
Model  2,  MLR  Model  3,  and  the  PIPR  Model,  aimed  at
identifying the most correlated variables associated with
increased  obesity.  Initially,  the  five  most  correlated
protein items are utilized in MLR Model 1. Subsequently,
based  on  the  significance  of  the  predictor  variables,  the
least  significant  variable  is  eliminated,  leading  to  the
construction of MLR Model 2.  This process continues by
iteratively removing the least significant variable among
the  four  most  correlated  protein  items,  forming
subsequent models. The PIPR model created identifies the
two  most  correlated  protein  items,  both  of  which
significantly  impact  the  increase  in  obesity.

2.5.1. MLR Model 1
The  MLR  Model  1  identifies  the  most  correlated

protein  food  items  using  the  prediction  Eq.  (10)  to
forecast  obesity  levels  based  on  given  values  of  protein
food  items.  Table  4  displays  the  estimates,  standard
errors,  t-values,  and  Pr(>|t|)  for  the  protein-rich  food
items  most  correlated  with  obesity,  including  animal
products,  meat,  milk  (including  butter),  eggs,  and
vegetable oils. In Table 4, the Pr(>|t|) column denotes the
p-value corresponding to  the t-value presented.  If  the p-
value  is  below  a  predetermined  significance  level  (p  =
0.05),  the  predictor  variable  is  deemed  to  have  a
statistically  significant  association  with  the  response
variable  in  the  model.  Among  the  predictor  variables,
vegetable  oils  exhibit  comparatively  lower  significance
based on the Pr(>|t|) value compared to other variables.
Consequently,  an  improved  MLR  Model  2  were
constructed  subsequent  to  the  removal  of  the  less
statistically  significant  variable  “vegetable  oils”.

(10)

2.5.2. MLR Model 2
The  refined  regression  model  2,  focusing  on  the  most

correlated variables, is constructed following the elimination
of the less statistically significant variable “vegetable oils”,

ŷ1 = β0 + (β1 ∗ x1)
ŷ2 = β0 + (β1 ∗ x2)
ŷ3 = β0 + (β1 ∗ x3)  

 .   .  .
ŷn = β0 + (β1 ∗ xn)

            

ŷ1

ŷ2

ŷ3

. . .
ŷn

=

[
 
 
 
1 x1

1
1… 
1

x2

x3…
xn]

 
 
 

∗ [
β0

β1
]

ŷ1, ŷ2, ŷ3 … ŷ
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ŷ1

ŷ2

ŷ3

. . .
ŷn

 

β = [
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β1
] 
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1
1… 
1
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Y = Xβ                                                                                                         

XT ∗ Y = XT ∗ Xβ

 

[
1 1 1 … 1

x1 x2 x3 … xn
] ∗
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ŷ1

ŷ2

ŷ3

. . .
ŷn]

 
 
 
 

= [
1 1 1 … 1

x1 x2 x3 … xn
] ∗
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1
1… 
1
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 ∗ [
β0

β1
]

∑ Y
∑XY

= [
n ∑X

∑X ∑X2] ∗ [
β0

β1
]

 

n ∗ β0   + ∑X   ∗  β1   = Y

∑X ∗ β0  +  ∑ X2 ∗  β1 = ∑XY

 ŷ = β0 + (β1 ∗ x) 

ŷ = β0 + (β1 ∗ x1) + (β2 ∗ x2) + ⋯+ (βn ∗ xn)

ŷ = 6.1930 + (−0.2028 ∗ Animal products) +

(0.9455 ∗ Meat) + (0.7332 ∗ Milk including butter)

+(2.0103 ∗ Eggs) + (43.2662 ∗ Vegetable oils)   
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as  outlined  in  Eq.  (11).  Table  5  displays  the  estimates,
standard  errors,  t-values,  and  Pr(>|t|)  for  the  highly
correlated  variables-namely,  animal  products,  eggs,  meat,
and  milk  (including  butter)-after  excluding  the  less
statistically  significant  variable,  “Vegetable  Oils”.  In  the
improved regression model 2, the predictor variable “animal
products”  exhibits  lower  significance  based  on  the  Pr(>|t|)
compared to the other variables.

(11)

2.5.3. MLR Model 3
The refined regression model 3 is formulated for the most

correlated variables subsequent to excluding the less statis-
tically significant variable, “Animal products”, as expressed
in Eq. (12). Table 6 presents the estimates, standard errors,
t-values,  and  Pr(>|t|)  for  the  highly  correlated  variables,
specifically,  meat,  milk  (including  butter),  and  eggs  after
removing  the  less  statistically  significant  variable,  “Animal
products”. In the improved regression model 3, the predictor

variable  “Eggs”  demonstrates  lower  significance  based  on
the Pr(>|t|) compared to the other variables.

(12)

2.5.4. PIPR Model

The  PIPR  model  focusing  on  the  most  correlated
variables,  subsequent  to  excluding  the  less  statistically
significant variable “Eggs”, is expressed in Eq. (13). Table 7
showcases the outcomes for the highly correlated varia-bles-
specifically, meat and milk (including butter)-after removing
the less statistically significant variable “Eggs”. Finally, the
protein-rich items “Meat” and “Milk including butter” exhibit
greater  statistical  significance.  These  two  items  especially
contribute to the increase of obesity levels, exerting a more
substantial effect. The notable influence of these protein-rich
items  on  obesity,  as  depicted  in  Fig.  (4),  highlights  their
potential as impactful contributors to the increase in obesity
levels.

(13)

Table 4. The output for the most correlated variables.

Coefficients Estimate Std. Error t value Pr(>|t|)

Animal products -0.2028 0.2252 -0.9 0.036950
Meat 0.9455 0.2897 3.263 0.00140 **

Milk including butter 0.7332 0.2389 3.069 0.00261 **
Eggs 2.0103 1.0584 1.899 0.05970.

Vegetable oils 43.2662 31.5874 1.37 0.17310

Table 5. The output for the most correlated variables after removing “vegetable oils”.

Coefficients Estimate Std. Error t value Pr(>|t|)

Animal products -0.1962 0.2259 -0.869 0.386585

Meat 0.9844 0.2893 3.403 0.000881 ***
Milk including butter 0.8100 0.2330 3.476 0.000688 ***

Eggs 2.1054 1.0596 1.987 0.048979 *

Table 6. The output for the most correlated variables after removing “animal products”.

Coefficients Estimate Std. Error t value Pr(>|t|)

Meat 0.7729 0.1561 4.953 2.16e-06 ***
Milk including butter 0.6810 0.1795 3.795 0.000223 ***

Eggs 1.7418 0.9725 1.791 0.075551

Table 7. The output for the most correlated variables after removing “eggs”.

Coefficients Estimate Std. Error t value Pr(>|t|)

Meat 0.8858 0.1439 6.155 8.03e-09 ***
Milk Including Butter 0.7832 4.565 4.565 1.11e-05 ***

ŷ = 5.9628 + (−0.1962 ∗ Animal products) +

(0.9844 ∗ Meat)

+ (0.8100 ∗ Milk including butter)

+(2.1054 ∗ Eggs) 

 ŷ = 5.0774 + (0.7729 ∗ Meat) +

(0.6810 ∗ Milk including butter)+

(1.7418 ∗ Eggs)

 ŷ = 5.3587 + (0.8858 ∗ Meat) +

(0.7832 ∗ Milk including butter)  
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Fig. (4a,b). Root cause for increased obesity.

2.6. Regression Model for Least Correlated Variables
Initially,  four  of  the  least  correlated  protein  items

among  the  23  variables  are  inputted  into  MLR model  1.
Subsequently,  based on the significance of the predictor
variables,  the  least  significant  variable  is  eliminated,
leading  to  the  creation  of  MLR  model  2.  This  process
continues  iteratively  for  the  three  remaining  least
correlated  protein  items,  removing  the  least  significant
variable each time. The PIPR model established identifies
the two least correlated protein items, both of which play
a significant role in reducing obesity.

2.6.1. MLR Model 1
The MLR model 1 is constructed for the least correlated

protein  food  items,  employing  a  prediction  equation  that
estimates  obesity  levels  based  on  given  values  of  vegetal
products,  cereals  excluding  beer,  pulses,  and  oil  crops,  as
presented  in  Eq.  (14).  Table  8  displays  outputs  such  as
estimates,  standard  errors,  t-values,  and  Pr(>|t|)  for  these
least  correlated  food  items.  Within  Table  8,  the  predictor
variable “cereals excluding beer” shows comparatively lower
significance  based  on  the  Pr(>|t|)  value  in  comparison  to
other variables. Subsequently, an improved regression model

were  established  after  eliminating  the  less  statistically
significant  variable  “cereals  excluding  beer”.

(14)

2.6.2. MLR Model 2
The  refined  regression  MLR  model  2  for  the  least

correlated  variables  is  formulated  subsequent  to
eliminating  the  less  statistically  significant  variable
“cereals  excluding  beer”,  depicted  in  Eq.  (15).  Table  9
presents the outputs, including estimates, standard errors,
t-values,  and  Pr(>|t|),  for  the  least  correlated  variables-
namely, vegetal products, pulses, and oil crops-following
the  removal  of  the  less  statistically  significant  variable
“cereals excluding beer”. In Table 9, the predictor variable
“pulses” exhibits lower significance based on the Pr(>|t|)
compared  to  the  other  variables.  Consequently,  an
enhanced  regression  model  is  constructed  after
eliminating  the  statistically  significant  variable  “pulses”.

(15)

Table 8. The output for the least correlated variables.

Coefficients Estimate Std. Error t value Pr(>|t|)

Vegetal products -0.54097 0.28882 -1.873 0.0633
Cereals excluding beer -0.04781 0.27858 -0.172 0.8640

Pulses -0.25608 0.39878 -0.642 0.5219
Oilcrops -1.28237 0.53585 -2.393 0.0181 *

Table 9. The output for the least correlated variables.

Coefficients Estimate Std. Error t value Pr(>|t|)

Vegetal products -0.5871 0.1052 -5.581 1.28e-07 ***
Pulses -0.2074 0.2790 -0.743 0.45863
Oilcrops -1.2337 0.4529 -2.724 0.00731 **

ŷ = 37.61843 + (−0.54097 ∗ Vegetal products) +

(−0.04781 ∗ Cereals  excluding beer) +

(0.25608 ∗ Pluses) + (−1.28237 ∗ Oilcrops)

ŷ = 37.8386 + (−0.5871 ∗ Vegetal products)

+ (−0.2074 ∗ Pulses) + (−1.2337 ∗ Oilcrops) 

(a) Meat                               (b)  Milk Including Butter 
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Table 10. The output for the least correlated variables.

Coefficients Estimate Std. Error t value Pr(>|t|)

Vegetal products -0.63242 0.08559 -7.389 1.39e-11 ***
Oil crops -1.20439 0.45047 -2.674 0.00843 **

Fig. (5a,b). Root cause for decreasing obesity.

2.6.3. PIPR Model
The  PIPR  model  focusing  on  the  least  correlated

variables,  after  the  exclusion  of  the  less  statistically
significant  variable  “pulses”,  is  represented  in  Eq.  (16).
Table  10  illustrates  the  estimates,  standard  errors,  t-
values,  and  Pr(>|t|)  for  the  least  correlated  variables
following  the  removal  of  the  less  statistically  significant
variable  “pulses”.  Remarkably,  among  these  variables,
“vegetal products” and “oil crops” exhibit more statistical
significance.  These  two  items  particularly  contribute  to
reducing  obesity  levels.  Specifically,  vegetables  and  oil
crops  emerge  as  high-impact  potential  protein-rich  food
items in the reduction of obesity, as highlighted in Fig. (5).

(16)

2.7. Regression Statistical Measure
The  regression  statistical  measures  provide  insights

into the model's performance. These measures encompass
the  correlation  coefficient  (R),  the  coefficient  of
determination (R2), the adjusted R-squared (Adjusted R2),
and  the  standard  error.  The  correlation  coefficient  (R)
quantifies  the  strength  of  the  relationship  between  two
variables within the model. Meanwhile, the coefficient of
determination  (R2)  serves  as  a  goodness-of-fit  metric,
explaining  how  well  the  model  fits  the  given  data.  The
adjusted  R-squared  indicates  the  importance  of  a
particular variable in the model. Additionally, the standard
error is utilized to assess the accuracy of predictions made
by  the  model.  These  regression  statistical  measures  are
employed  on  both  the  training  and  testing  datasets  to

evaluate  and  understand  the  model's  performance
characteristics.

2.7.1. Correlation Coefficient (R)
The  correlation  coefficient  (R)  is  a  measure  used  to

quantify the model's ability. Jacob Cohen (1992) proposed
guidelines  for  interpreting  correlation  coefficients  [22],
which are presented in Table 11.

The  R  values  for  the  most  and  least  correlated
variables are depicted in Tables 12 and 13, respectively.
The  values  related  to  the  most  and  least  correlated
variables in the testing data indicate a high R value for the
PIPR MLR model.

2.7.2. Coefficient of Determination (R2)
The  R2  value  ranges  between  0  and  1.  A  high  R2

suggests a well-fitted model  for the data,  while a low R2

indicates  a  poor  fit  or  the  absence  of  vital  explanatory
variables. However, a high R2 doesn't always guarantee an
accurate  model  for  estimation  and  forecasting;  the
assessment  of  fit  relies  on  the  analysis  context.  The
coefficient  of  determination  (R2)  is  calculated  using  Eq.
(17).  Especially,  R2  tends to increase whenever an extra
variable is included in the model, potentially leading to an
artificially  high  R2  due  to  the  inclusion  of  an  excessive
repressors. Tables 14 and 15 showcase the R2 values for
the most and least correlated variables, respectively. It is
observed  that  the  R2  values  for  both  the  most  and  least
correlated variables in both the training and testing data
increase with the addition of an extra protein food item.

�̂� = 38.57037 + (−0.63242 ∗ Vegetal products)

+ (−1.20439 ∗ Oilcrops)  

(a)Vegetal products                                   (b) Oil crops 
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(17)

2.7.3. Adjusted R2

The  adjusted  R2  penalizes  the  inclusion  of  extra
independent variables in the model. It increases only if a
new independent variable enhances the model more than

anticipated by chance. However, it decreases if a predictor
improves the model by less than expected by chance. This
value  tends  to  penalize  the  adjusted  R2  when  an
additionally  added  independent  variable  is  ineffective,
indicating that the variable has no effect on the dependent
variable.  Eq.  (18)  is  used  to  calculate  the  adjusted  R2.
Tables 16 and 17 present the adjusted R2 values for the

Table 11. Correlation coefficient value and interpretation.

Correlation Coefficient Value 0.0 to -0.3
0.0 to +0.3

-0.5 to -0.3
0.3 to 0.5

-0.9 to -0.5
0.5 to 0.9

-1.0 to -0.9
0.9 to 1.0

Association Weak Moderate Strong Very Strong

Table 12. Correlation (R) values for the most correlated variables.

Name of the Model Name of the Variables

MLR

Training Testing

R R

PIPR Meat+ Milk including butter 0.815 0.854
Model 3 Eggs+ Meat+ Milk including butter 0.806 0.812
Model 2 Animal products+ Eggs+ Meat+ Milk including butter 0.800 0.808
Model 1 Vegetable oils + Animal products+ Eggs+ Meat+ Milk including butter 0.789 0.799

Table 13. Correlation (R) values for the least correlated variables.

Name of the Model Name of the Variables

MLR

Training Testing

R R

PIPR Oilcrops+ Vegetal products 0.819 0.825
Model 2 Pulses+ Oilcrops+ Vegetal products 0.811 0.818
Model 1 Cereals excluding beer + Pulses + Oilcrops+ Vegetal products 0.801 0.812

Table 14. Coefficient of determination (R2) value for the most correlated variables.

Regression Model Name of the Variables
Training Testing

R2 value R2 value

PIPR Meat+ Milk including butter 0.903 0.943
Model 3 Eggs+ Meat+ Milk including butter 0.827 0.830
Model 2 Animal products+ Eggs+ Meat+ Milk including butter 0.810 0.814
Model 1 Vegetable oils + Animal products+ Eggs+ Meat+ Milk including butter 0.802 0.810

Table 15. Coefficient of determination (R2) value for the least correlated variables.

Regression Model Name of the Variables
Training Testing

R2 value R2 value

PIPR Oilcrops+ Vegetal products 0.892 0.910
Model 2 Pulses+ Oilcrops+ Vegetal products 0.899 0.913
Model 1 Cereals excluding beer + Pulses + Oilcrops+ Vegetal products 0.902 0.920

R2 =
SSR

SST
=

Regression Sum of Square

Total Sum of Square
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most and least correlated variables, respectively. In Table
16,  concerning  the  most  correlated  variables  in  the
training  data,  Model  1  demonstrates  a  high  adjusted  R2

value, while for the testing data, the PIPR model exhibits a
high  adjusted  R2  value.  In  Table  17,  for  the  least
correlated variables in both the training and testing data,
the adjusted R2 value is high for the PIPR model.

(18)

Where p denotes the number of predictors, R2 denotes
the  coefficient  of  determination,  and  n  represents  the
sample  size.

Table 16. Adjusted (R2) value for the most correlated variables.

Regression Model Name of the Variables
Training Testing

Adjusted R2 value Adjusted R2 value

PIPR Meat+ Milk including butter 0.912 0.921
Model 3 Eggs+ Meat+ Milk including butter 0.839 0.845
Model 2 Animal products+ Eggs + Meat+ Milk including butter 0.818 0.835
Model 1 Vegetable oils + Animal products+ Eggs+ Meat+ Milk including butter 0.797 0.812

Table 17. Adjusted (R2) value for the least correlated variables.

Regression Model Name of the variable
Training Testing

Adjusted R2 value Adjusted R2 value

PIPR Oilcrops+ Vegetal products 0.910 0.912
Model 2 Pulses+ Oilcrops+ Vegetal products 0.895 0.881
Model 1 Cereals excluding beer + Pulses + Oilcrops+ Vegetal products 0.855 0.878

Table 18. Standard error value for the most correlated variables.

Regression Model Name of the Variables
Training Testing

Standard Error Standard Error

PIPR Meat+ Milk including butter 7.331 6.911
Model 3 Eggs+ Meat+ Milk including butter 7.271 6.955
Model 2 Animal products+ Eggs+ Meat+ Milk including butter 7.278 6.948
Model 1 Vegetable oils + Animal products+ Eggs+ Meat+ Milk including butter 7.254 6.992

Table 19. Standard error value for the least correlated variables.

Regression Model Name of the Variables
Training Testing

Standard Error Standard Error

PIPR Oilcrops+ Vegetal products 7.564 7.533
Model 2 Pulses+ Oilcrops+ Vegetal products 7.536 7.671
Model 1 Cereals excluding beer + Pulses + Oilcrops+ Vegetal products 7.524 7.797

Table 20. AIC and BIC values for the most correlated variables.

Regression Model Name of the Variables
Testing Testing

AIC BIC

PIPR Meat+ Milk including butter 212.6744 218.4104
Model 3 Eggs+ Meat+ Milk including butter 213.9378 221.1077
Model 2 Animal products+ Eggs+ Meat+ Milk including butter 214.705 223.309
Model 1 Vegetable oils + Animal products+ Eggs+ Meat+ Milk including butter 215.8803 225.9182

Adjusted R2 = 1 − (1 − R2)
(n−1)

(n−p−1)
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Table 21. AIC and BIC values for the least correlated variables.

Regression Model Name of the variables
Testing Testing

AIC BIC

PIPR Oilcrops+ Vegetal products 218.0138 223.7498
Model 2 Pulses+ Oilcrops+ Vegetal products 220.0116 227.1816
Model 1 Cereals excluding beer + Pulses + Oilcrops+ Vegetal products 221.8572 230.4612

2.7.4. Standard Error (SE)
The standard error denotes the accuracy of predictions

using the regression model. A smaller SE value indicates
closer  observations  to  the  fitted  line,  while  a  larger  SE
value  indicates  observations  farther  away.  The  standard
error  values  for  the  most  and  least  correlated  variables
are displayed in Tables 18 and 19, respectively. In Table
18,  the  standard  error  values  for  the  most  correlated
variables show low values in both the training and testing
datasets.  Regarding  Table  19,  for  the  least  correlated
variables, the standard error value is low in the training
data for Model 1, and in the testing data, it is low for the
PIPR model.  The regression statistical measures support
the quantification of the PIPR model's ability through the
adjusted  R2  value  and  standard  error.  Additionally,  AIC
and BIC are calculated to validate the model's quality.

2.8. PIPR Model Performance Evaluation
To  ensure  the  proposed  model's  quality,  the  model's

performance  is  assessed  using  two  penalized  likelihood
criteria: Akaike Information Criterion (AIC) and Bayesian
Information  Criterion  (BIC)  concerning protein-rich  food
items.  AIC  penalizes  the  addition  of  extra  variables  to  a
model  by imposing a  penalty  that  increases the error  as
additional  variables  are  included.  Lower  AIC  values
indicate  a  better  model  fit.  On  the  other  hand,  BIC  is  a
variation  of  AIC  that  imposes  more  penalty  for
incorporating  extra  variables.  For  model  comparison,
preference is given to the model exhibiting the lowest AIC
and BIC scores. The AIC and BIC values for the most and
least correlated variables are displayed in Tables 20 and
21, respectively. These values were computed using Eqs.
(19 and 20), respectively.

(19)

(20)

Where  np  denotes  the  number  of  predictors,  and  s
denotes  the  sample  size.

3. RESULTS

3.1. Performance Metrics
To create and implement a comprehensive model, it is

essential  to  assess  it  using  a  variety  of  metrics.  This

process  aids  in  improving  the  model's  performance  and
refining  it  for  better  results.  The  proposed  Protein  Item
Prediction  Regression  (PIPR)  model  for  regression  tasks
employs  various  evaluation  metrics,  such  as  Mean
Squared Error (MSE), Root Mean Squared Error (RMSE),
Mean  Absolute  Percentage  Error  (MAPE),  and  Mean
Absolute  Error  (MAE).  MSE  represents  the  squared
difference  between  actual  and  predicted  values,  while
RMSE calculates the average deviation between predicted
and  actual  values.  Lower  values  of  MSE  and  RMSE
indicate  enhanced  model  accuracy.  MAE  measures  the
prediction  error  by  determining  the  average  absolute
difference  between  the  observed  and  predicted  values.
MAPE  measures  accuracy  in  terms  of  percentage  by
calculating  the  average  absolute  percent  error  between
observed and actual values. Eqs. (21, 22, 23, and 24) are
utilized  to  compute  MSE,  RMSE,  MAE,  and  MAPE,
respectively.

(21)

(22)

(23)

(24)

Where
n - Number of data points
yi - Observed values

 - Predicted values.

3.2. Performance Validation of the Proposed Model
The  performance  of  the  PIPR  Model  is  validated  by

computing the performance metrics for the most and least
correlated  protein  food  items.  The  evaluation  metric
values for the most correlated variables, specifically meat
and milk (without butter),  within the PIPR model exhibit
lower  error  values  compared  to  other  models,  as
illustrated  in  Table  22.

In the PIPR model, the evaluation metric values for the
least  correlated  variables,  namely,  vegetal  products  and
oil crops, display a lower error value of 7.24 compared to
other models, as shown in Table 23, (Fig. 6).

AIC =  − 2 ∗ ln(likelihood) +  2 ∗ np  

BIC =  − 2 ∗ ln(likelihood) +  ln(np) ∗ s  

MSE =
1

n
∑ (yi − ŷi )

2  n
i=1

RMSE = √
1

n
∑ (yi − ŷi )

2n
i=1

MAE=
1

n
∑ |(yi − ŷi )|

n
i=1

MAPE=
100%

n
∑

|(yi−ŷi )|

yi

n
i=1

�̂�𝐢
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Table 22. Model evaluation values for the most correlated variables.

Regression Model Name of the Variables
Testing Data

MSE RMSE MAE MAPE

PIPR Meat+ Milk including butter 49.59 7.04 5.08 29%
Model 3 Eggs+ Meat+ Milk including butter 50.49 7.11 5.15 30%
Model 2 Animal products+ Eggs+ Meat+ Milk including butter 51.05 7.15 5.31 34%
Model 1 Vegetable oils + Animal products+ Eggs+ Meat+ Milk including butter 53.52 7.32 5.19 30%

Fig. (6). Model evaluation values for the least correlated variables.

Table 23. Model evaluation values for the least correlated variables.

Regression Model Name of the Variables
Testing Data

MSE RMSE MAE MAPE

PIPR Oilcrops + Vegetal products 52.51 7.24 5.39 31%
Model 2 Pulses+ Oilcrops+ Vegetal products 52.57 7.25 5.40 32%
Model 1 Cereals excluding beer +Pulses + Oilcrops Vegetal products 52.47 7.24 5.39 32%

4. DISCUSSION
In  the  regression  model  for  the  least  correlated

variables, Model 2's RMSE value is 7.25 and the MAE is
4.0, which includes vegetal products, oil crops, and pulses;
however, Model 1's values are 7.24 and 5.34, respectively,
which include vegetal products, cereals including beer, oil
crops, and pulses; and the PIPR model's RMSE is 7.24 and
the MAE is 5.39, which includes vegetal products and oil
crops.  Model  1  and  the  PIPR  model  have  similar  RMSE
and MAE values,  but  the PIPR model  has a  lower MAPE

value  of  31%  than  Model  1.  The  statistical  measure,
adjusted R2 for the PIPR Model, is higher for testing data
than  the  remaining  three  models  for  the  most  and  least
correlated protein food items. When compared with other
models,  the  results  of  the  evaluation  metrics  and
statistical  measures show that  the proposed PIPR model
for  the most  and least  correlated protein food items has
low error values and a high adjusted R2. This clearly shows
that  the  model  is  the  most  efficient  at  predicting  the
protein food product with the greatest impact on obesity.
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4.1. Proposed Method for the PIPR Model

4.1.1. Preprocessing

Initially, the dataset undergoes preprocessing to handle
missing  data  and  assess  correlation  levels  among
attributes.
Missing  values  are  substituted  with  mean  values  to
address this issue.
Feature selection techniques are applied to identify the
most  impactful  features  capable  of  enhancing  model
performance.

4.1.2. Feature Selection

Correlation analysis, specifically using methods like the
Pearson  Correlation  Coefficient  (PCC),  is  utilized  for
feature  selection.
The  selected  features  demonstrate  strong  associations
with  the  output  variable  while  maintaining  minimal
associations  among  themselves.
This  analysis  identifies  the  variables  exerting  the  most
significant influence on an individual's obesity levels.

4.1.3. Regression Model Development

The  dataset  is  partitioned  into  training  and  testing
subsets.
Multiple Linear Regression (MLR) models are developed
for  both  the  most  correlated  variables  contributing  to
increased  obesity  and  the  least  correlated  variables
reducing  obesity.
MLR models undergo iterative refinement, removing the
least  statistically  significant  variables  among  the
correlated  protein  food  items.
The  final  PIPR  model  is  formulated  based  on  the  most
significant  correlated  variables  identified  through  the
iterative  process.

4.1.4. Evaluation Metrics

The  model's  predictive  performance  is  assessed  using
various evaluation metrics, including Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE),  Mean Absolute Percentage Error (MAPE),
adjusted R-squared, and standard error.
Additionally,  the  model's  quality  is  validated  using
penalized likelihood criteria such as Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC).

4.1.5. Final Ananlysis

The  PIPR  model  demonstrates  its  superiority  in
accurately predicting the impact of protein-rich foods on
obesity, showcasing lower error rates and high adjusted
R2 values across various metrics.
Through rigorous evaluation, the proposed method offers
valuable insights into the complex relationship between
specific  protein  foods  and  obesity,  positioning  it  as  a

promising  tool  for  understanding  and  mitigating  this
global  health  concern.

CONCLUSION
Addressing  the  global  health  challenge  of  obesity

requires  proactive  measures  and  comprehensive
strategies.  In  this  study,  a  novel  approach,  the  Protein
Food  Item  Prediction  Regression  (PIPR)  model,  was
introduced and applied to forecast the influence of various
protein-rich  food  items  on  obesity  levels.  Leveraging
machine learning techniques and regression analysis, the
PIPR  model  aimed  to  identify  the  protein  foods  most
strongly associated with increased or decreased obesity.
The research utilized a dataset encompassing information
on  diverse  food  types,  global  obesity  and  undernutrition
rates,  and  COVID-19  cases  across  numerous  countries.
After  rigorous  preprocessing  and  feature  selection
techniques,  the  PIPR  model  underwent  training  and
testing  phases  to  assess  its  predictive  capabilities.  The
findings from this study reveal significant insights into the
correlation  between  specific  protein-rich  food  items  and
obesity. Notably, the model identified certain protein foods
that  exhibit  strong  correlations  with  increased  obesity,
such as meat and milk (including butter). The PIPR model
identified  other  protein-rich  items,  like  vegetal  products
and  oil  crops,  that  showcased  a  more  prominent  link  to
reduced  obesity  rates.  The  performance  evaluation
metrics-Mean Squared Error (MSE), Root Mean Squared
Error  (RMSE),  Mean  Absolute  Error  (MAE),  Mean
Absolute  Percentage  Error  (MAPE),  adjusted  R-squared,
and  standard  error-consistently  highlighted  the  PIPR
model's superiority in predicting the impact of protein rich
food items on obesity compared to alternative regression
models.  In  summary,  the  PIPR  model  demonstrates
promising efficiency in explaining the complex relationship
between specific  protein  foods and obesity.  Its  ability  to
identify both positively and negatively correlated protein
items  with  obesity  emphasizes  its  potential  in  guiding
dietary recommendations and public health policies aimed
at combating obesity on a global scale. Further research
and  validation  using  diverse  datasets  and  refined
methodologies  could  enhance  the  model's  precision  and
contribute  significantly  to  mitigating  the  prevalence  of
obesity  worldwide.  Exploring  the  integration  of
longitudinal data and considering socio-economic factors
could  further  enhance  the  predictive  accuracy  and
practical  utility  of  the  model  in  addressing  the  complex
dynamics of obesity.
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