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Abstract:
Introduction: Traditional feed-forward neural networks (FFNN) have been widely used in image processing, but
their effectiveness can be limited. To address this, we develop two deep learning models based on FFNN: the deep
backpropagation neural  network classifier  (DBPNN) and the deep radial  basis  function neural  network classifier
(DRBFNN), integrating convolutional layers for feature extraction.

Methods:  We  apply  a  training  algorithm  to  the  deep,  dense  layers  of  both  classifiers,  optimizing  their  layer
structures  for  improved  classification  accuracy  across  various  hyperspectral  datasets.  Testing  is  conducted  on
datasets including Indian Pine, University of Pavia, Kennedy Space Centre, and Salinas, validating the effectiveness
of our approach in feature extraction and noise reduction.

Results: Our experiments demonstrate the superior performance of the DBPNN and DRBFNN classifiers compared
to previous methods. We report enhanced classification accuracy, reduced mean square error, shorter training times,
and fewer epochs required for convergence across all tested hyperspectral datasets.

Conclusion: The results underscore the efficacy of deep learning feed-forward classifiers in hyperspectral image
processing. By leveraging convolutional layers, the DBPNN and DRBFNN models exhibit promising capabilities in
feature  extraction  and  noise  reduction,  surpassing  the  performance  of  conventional  classifiers.  These  findings
highlight the potential of our approach to advance hyperspectral image classification tasks.
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basis function neural network, Rectified linear unit, Deep learning, Classification accuracy.
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1. INTRODUCTION
This article presents novel deep learning models with a

feed-forward  architecture  and  gradient  descent  learning
designed  for  hyperspectral  image  classification  [1].  The
developed  models,  including  the  deep  backpropagation
neural network classifier (DBPNN) and deep radial basis
function  neural  network  classifier  (DRBFNN),  utilize

convolutional  layers  for  feature  extraction.  The  training
algorithm  targets  deep  dense  layers  of  both  classifiers,
aiming for effective classification with increased accuracy
across  hyperspectral  datasets  such  as  Indian  Pine,
University of  Pavia,  Kennedy Space Centre,  and Salinas.
The  layer  structures  of  DBPNN  and  DRBFNN  are
optimized  for  enhanced  feature  extraction  and  noise
removal in hyperspectral images. Comprehensive training,
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rigorous testing, and meticulous validation are conducted
on all four hyperspectral datasets, leading to the detailed
reporting  of  their  performance  metrics.  The  evaluated
metrics  demonstrate  the  efficacy  and  accuracy  of  both
deep  learning  feed-forward  classifiers,  showcasing  their
superiority  in  the  classification  process  compared  to
existing  classifiers  [2].

A  comprehensive  advancement  in  image  processing
techniques is presented in this study, focusing on addres-
sing feature loss in deep neural network-based algorithms.
Employing  a  multi-level  information  compensation  stra-
tegy  and  integrating  the  U-Net  network  architecture
enhances  image  super-resolution  recons  truction,  parti-
cularly  in  texture  and  edge  details  [3].  The  Enhanced
Image Inpainting Network employs  a  multi-scale  feature
module  in  conjunction  with  an  enhanced  attention
mechanism,  bolstering  its  ability  to  perform  semantic
image  inpainting.  Furthermore,  the  optimized  loss
function  combines  style  and  perceptual  loss  functions,
thereby  enhancing  the  model's  overall  performance  [4].
The  article  introduces  an  innovative  image  inpainting
algorithm utilizing a partial multi-scale channel attention
mechanism  and  deep  neural  networks  to  address
limitations in capturing multi-scale features with irregular
defects  [5].  Proposing  an  innovative  approach  to  image
restoration, this method integrates Semantic Priors, Deep
Attention Residual Group, and Full-scale Skip Connection
techniques.  The Semantic  Priors  Network is  tasked with
learning comprehensive semantic information for missing
regions,  thereby  facilitating  precise  completion.  Mean-
while, the Deep Attention Residual Group concentrates on
missing regions and adjusts channel features accordingly.
Additionally, Full-scale Skip Connection merges low-level
boundary information with high-level textures, enhancing
the  effectiveness  of  the  restoration  process  [6].  A
lightweight method is proposed, combining group convo-
lution  and  attention  mechanisms  to  enhance  traditional
convolution  modules.  Group  convolution  achieves  multi-
level  image  inpainting,  while  a  rotating  attention
mechanism  addresses  information  mobility  between
channels. A parallel discriminator structure ensures local
and global consistency in the image inpainting process [7].

The  paper  addresses  challenges  in  hyperspectral
image  classification  using  conventional  methods,  arising
from the complexity of processing multiple spectral bands,
hindering  feature  extraction  and  noise  reduction.
Traditional classifiers struggle with such data complexity.
The article aims to leverage deep learning, especially feed-
forward  neural  networks,  to  enhance  classification
accuracy,  given  their  ability  to  autonomously  learn
features.  It  introduces  two  novel  deep  learning  models-
the  deep  backpropagation  neural  network  classifier
(DBPNN)  and  the  deep  radial  basis  function  neural
network  classifier  (DRBFNN)-tailored  for  hyperspectral
image classification, incorporating convolutional layers for
feature  extraction.  The  goal  is  to  improve  feature
extraction and noise reduction in hyperspectral images. By
optimizing the layer structures of DBPNN and DRBFNN,
the article aims to enhance classification accuracy across

diverse  hyperspectral  datasets,  ultimately  overcoming
traditional  classifier  limitations  by  leveraging  deep
learning for improved accuracy in feature extraction and
noise reduction. Many prior studies in this domain exhibit
deficiencies in their literature reviews, leading to a limited
contextual understanding. Additionally, some suffer from
methodological weaknesses, such as small sample sizes or
inadequate  controls,  compromising  the  reliability  of
findings.

2. MATERIALS AND METHODS

2.1. Proposed Deep Learning-based FFNN Models
This  work  introduces  two  innovative  deep  learning

models, a backpropagation neural network (DBPNN) and a
radial basis function neural network (DRBFNN), designed
for  efficient  hyperspectral  image  classification.  Both
classifiers leverage a structured layer design and employ
the  gradient  descent  learning  rule  for  training.  The
incorporation  of  convolutional  and  pooling  layers  is
specifically designed to extract crucial features from the
input image datasets.

2.2. Developed Deep Learning-based Back-Propaga-
tion Neural Networks

The  newly  modelled  deep  learning  BPNN  classifier
comprises  various  layers,  including  input,  convolutional,
pooling,  dense,  flatten,  and  a  linear  classifier  layer.  The
proposed  DBPNN  classifier  is  specifically  designed  to
achieve enhanced training and learning performance, even
in the presence of a limited dataset. This optimized deep
learning  BPNN  model  is  employed  for  effective
hyperspectral image classification, where the output from
hyperspectral  sensors  serves  as  input  for  the  DBPNN
classifier, as illustrated in Fig. (1). A basic block diagram
outlining the configuration of the input block is presented
in Fig. (2).

The  proposed  DBPNN  classifier  utilizes  two-
dimensional convolution layers during the training process
to  reduce  the  number  of  free  parameters.  These
convolutional  layers  showcase  the  capacity  of  local
receptive neurons and contribute to their  weight update
process  [8].  Kernel  filters  within  this  layer  regulate  the
input  presented  to  the  network  model,  involving  a
mathematical  operation  that  employs  the  dot  product  of
the kernel to diminish the filter matrix input.

(1)

(2)

In  this  context,  'O'  represents  the  two-dimensional
output  from  the  preceding  layer,  'c'  denotes  the  λ×λ
kernel size matrix with learnable parameters used in the
training  process.  The  coordinates  'x'  and  'y'  cover  all
points of λ, while 'δ' signifies the location index in the two-
dimensional kernel matrix. 'cw' denotes the kernel size of

𝐶2𝑒(𝑚) = ∑ ∑ 𝑐𝛼,𝛽
𝜆−1
𝛽=0 • 𝑚(𝑥 + 𝛼)(𝑦 + 𝛽)𝜆−1

𝛼=0  

𝐶1𝑒(𝑚) = ∑ 𝑐𝑊 ∗ 𝑚𝑁−1
𝛿=0  

2.2.1. Convolutional Layer
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Fig. (1). Structural levels in the modelled deep back-propagation neural network.

Fig. (2). Arrangement of the input block configuration.
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a  neuron,  and  the  ‘*’  operator  represents  the  cross-
correlation operator. 'C1e(m)' refers to a one-dimensional
convolution  operation  where  the  kernel  movement  is  in
one direction, although the input and output data pertain
to a two-dimensional context. On the other hand, 'C2e(m)'
signifies a two-dimensional convolution operation, where
kernel  positions  extend  in  two  directions,  and  three-
dimensional  input  and  output  data  are  utilized.  For  this
novel  DBPNN  classifier,  only  'C2e(m)'  operations  are
conducted, given that hyperspectral datasets correspond
to  image  datasets,  and  'C1e(m)'  is  used  for  time-series
image operations in the convolution process [9].

In the proposed DBPNN classifier model, the designed
pooling layer is connected to the successive convolutional
layer,  effectively  reducing  the  spatial  dimension  of  the
extracted  feature  map.  This  pooling  layer  serves  to
mitigate  overfitting  issues.  The  mathematical  represen-
tation of the pooling operation is expressed as:

(3)

(4)

In  this  context,  αin  and  βin  represents  the  width  and
height  of  the  input  matrices,  Skα  denotes  the  height
corresponding to  the  kernel  size,  specifies  the  width  for
the kernel size, αout and βout are the width and height of the
output matrix, and ‘ρ’ denotes the stride factor during the
pooling operation.

The  DL-based  back-propagation  neural  classifier
utilizes a non-linear activation function to learn complex
features from input datasets, particularly addressing the
non-linearity  in  hyperspectral  datasets.  The  classifier,
designed with Rectified Linear Unit (ReLU) as the chosen
non-linear  activation  function,  enhances  the  overall
performance of the deep learning model. Mathematically,
ReLU is denoted as,

(5)

In  Eq.  (5),  'm'  represents  the  input  features  of  the
image datasets.

The  input  block  initiates  correlation  between
convolutional layers and progresses to deep dense blocks.
Unlike  traditional  convolutional  neural  network  models,
this input block features a direct connection from input to
output. This direct link is expressed as,

(6)

In this scenario, a parameter element matching factor
is  employed  to  match  input  and  output  segments,
expressed  as,

(7)

In this context, m represents the input to this block, μ
signifies the output of these blocks, ξ denotes the mapping
relationship between the input  and output  layer,  and Dm

represents the dimension matching factor.
Fig.  (2)  illustrates the internal  structure of  the input

block  from Fig.  (1)  in  the  deep BPNN model.  This  input
block,  receiving  input  image  datasets,  includes  two
convolutions, two batch normalizations, and one rectified
linear unit block. The output from the batch normalization
unit  is  added  to  the  input,  followed  by  another  rectified
linear  unit  and  an  output  block.  Progressing  to  the
subsequent  convolutional  layer,  the  input  block  of  the
DBPNN  model  comprises  6  layers,  while  other
architectural blocks contribute 8 layers, totaling 14 layers.
Incorporating dropout, linear classification, softmax, and
output  layers,  the  model  forms  an  18-layer  Deep  Back
Propagation Neural Network. Notably, the developed deep
BPNN model  outperforms traditional  convolutional  layer
networks, demonstrating increased accuracy with deeper
network depths compared to CNN models.

In the proposed DBPNN model, the classification layer
is  designed  with  the  'softmax'  function  and  a  fully
connected  (FC)  layer.  The  fully  connected  layer
interconnects  neurons  between  layers,  forming  a  dense
layer with correlated perception neurons, expressed as,

(8)

Eq. (8), ω0 represents the bias, and the ultimate output
generated  by  the  DBPNN  model  is  denoted  as  ‘μ’.  The
novel  DBPNN  classifier  aims  to  capture  hyperspectral
sensor  images,  effectively  classifying  them  based  on
boundaries  and  performing  precise  segmentation.

In  the  new  DBPNN  classifier,  the  training  image
dataset  is  divided  into  dissimilar  mini-batches  for  batch
normalization,  optimizing  computational  burden,  and
convergence. The initial normalization involves scaling the
input image datasets, and subsequent activations enhance
training  speed,  stability,  and  consistency.  The
architectural  design  in  Fig.  (1)  aims  to  eliminate  noise
from  captured  hyperspectral  sensor  images,  extract
significant  features  using  convolutional  layers,  and
address  lower  gradient  features  with  the  dropout  layer.
This process enhances the effectiveness of hyperspectral
image classification in the new DBPNN classifier.

 Novel  Deep  Learning-Based  Radial  Basis
Function Neural Networks

The  multi-layer  feedforward  radial  basis  function
neural model, utilized the Gaussian activation function for
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determining the final network output. In the architectural
design of the multi-layer RBFNN, the norm is computed by
adding the norm (ϕ) with the functional layer of the basic
RBFNN model. The function representing the connection
link between the hidden and output layers is expressed as,

(9)

In Eq. (9), 'x' denotes the input data, 'α' is the learning
rate, 'w' represents connective link weights, 'N' stands for
the number of data samples, and 'Ri' indicates the radius
of  neighborhood  pixels  for  computing  the  Euclidean
distance norm. The Gaussian activation function is applied
to  each  radial  basis  function  neuron  to  obtain  the  final
network output. Fig. (3) illustrates the architecture of the
conventional RBF neural network model. The multi-layer
equations defining the radial basis function are provided
as follows:

(10)

(11)

(12)

In  Eqs.  (10-12),  'xi,'  'zj,'  and  'yk'  represent  the  input
neuronal output, hidden radial basis layer output, and the
final output from the output layer, respectively. Eq. (11)
features the weight matrix 'Wj' and center vector 'cjl,' while
in  Eq.  (12),  'akl'  indicates  the  coefficient  vector  of  the
output layer, 'Wk'  defines the weight matrix between the
hidden and output layers with 'zj'  as the output from the
hidden layer. The RBF model's final output is determined
by  the  linear  combination  of  all  basis  layers  across  the
entire network.

Fig. (3). Fundamental framework of the RBFNN model.
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The deep learning-based radial basis function classifier
is  structured  for  non-linear  transformations  in  the  deep
hidden layers.  It  operates  through pre-training and fine-
tuning, utilizing an auto-encoder for pre-training and back-
propagation  with  gradient  descent  for  fine-tuning.  The
auto-encoder's design involves an encoder mapping high-
dimensional  data to low-dimensional  data and a decoder
reconstructing the encoded information. The encoded data
is represented as,

(13)

In  this  context,  ‘Fθ’  represents  the  encoder  function,

‘xd’ denotes the datasets, ‘W0’ indicates the bias, and ‘Wx’
specifies the weight values. The reconstructed dataset by
the decoder is obtained as,

(14)

In Eqs. (13 and 14), Fen and Fde represent the encoding
activation and decoding activation, respectively, with ‘W0’
as the bias entity and ‘Wx’ as the weight entity. The new
Deep Radial Basis Function Neural Network is structured
to  minimize  the  reconstruction  error  concerning  the
training  data  samples.  The  cost  function  calculates  the
difference  between  the  encoded  and  decoded  data
samples, and the reconstruction error metric is assessed
as,

(15)

The  cost  function  defined  for  minimization  of  the
reconstruction  error  is  given  by,

(16)

During  pre-training,  all  ‘Q’  auto-encoders  from  the
preceding deep layers are consolidated, and the encoding
operation for the input samples is carried out at both the
input  layer  and  the  initial  deep  layer  of  the  proposed
DRBFNN  classifier.  The  training  of  the  new  DRBFNN,
incorporating  its  training  parameters  and  the  encoded
dataset,  is  represented  as,

(17)

Using the input xd, the combination of the input layer
and the first deep layer in the DRBFNN classifier serves as
the encoder neural  network for the initial  auto-encoding
process.  As  the  first  auto-encoder  begins  its  training,
minimizing  the  reconstruction  error,  the  initial  training
parameter  set  initializes  the  first  deep  layer  of  the
DRBFNN,  resulting  in  the  final  Qth-encoded  vector.

(18)

In Eq. (18), ‘θQ’ represents the Q-th trained parameters
of  the DRBFNN encoder module.  Through the described
operations, each deep layer of the new DRBFNN classifier
undergoes  pre-training  with  Q-stacked  auto-encoders  to
enhance  learning  and  generalization  abilities.
Subsequently,  fine-tuning  is  executed  using  the  back-
propagation  algorithm,  culminating  in  the  final  output
from  the  developed  DRBFNN  model.

(19)

The  output  parameter  is  denoted  as  ‘θQ+1’.  The  error
metric assessed throughout the training process is defined
as,

(20)

(21)

In  Eq.  (21),  ‘α’  indicates  the  learning  rate  of  the
training  process.

The  new  DRBFNN  classifier  is  utilized  for
hyperspectral image classification, focusing on automatic
feature detection without human intervention or additional
feature  extraction  techniques.  This  deep  learning-based
RBFNN  model  effectively  learns  significant  features  for
respective  classes  through  convolution  and  pooling
operations.  The  DRBFNN's  architecture  includes  input,
convolutional,  dense,  dropout,  and  output  layers.  Input
images,  sized  [1×132×1],  maintain  their  dimensionality
through  the  convolutional  layer.  With  two  convolutional
layers,  the  output  progresses  from  [1×132×1]  to
[1×120×64]. Flattening yields were [1×7680], followed by
dropout  and  a  dense  layer,  reducing  the  size  to  [1×96].
The output layer classifies the entire dataset, recognizing
hyperspectral features. Fig. (4) depicts the proposed deep
learning-based  radial  basis  function  neural  network
architecture.
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Fig. (4). Proposed design for DRBFNN classifier.

Fig. (5). Flowchart of the newly modeled deep learning RBFNN classifier.
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Each layer is linked to the subsequent layers through
weight parameters along connection links, forming filters
convoluted  with  the  input  layer.  These  filters  slide  over
local  receptive  fields  in  the  input  datasets,  acting  as
feature detectors and generating feature maps. The output
of the convolutional layer is expressed as,

(22)

where,  ‘f’  represents  the  activation  function,  is  the
weight parameters, indicates the bias of the present layer
with representing the input from the earlier layer.

Activating  to  determine  the  network  model's  output,
this  layer  executes  non-linear  transformations  for  image
class  discrimination  based  on  the  output  from  the
convolutional  filter.

The convolutional layer produces a feature map, which
undergoes subsampling at the pooling layer, resulting in,

(23)

In Eq. (23), 'ψ' denotes the pooling size. Compared to
other  classifiers,  the  newly  developed  Deep  Learning-
based  RBFNN,  featuring  multiple  hidden  dense  layers
representing  complex  functions,  exhibits  improved
learning and generalization abilities. Refer to Fig. (5) for
the  flowchart  of  the  proposed  DRBFNN  classifier
algorithm. The algorithmic steps for hyperspectral image
classification using the deep learning radial basis function
classifier are as follows:

Input:  hyperspectral_images,  DRBFNN_classifier_
parameters,  architectural_layers

Output:  trained_DRBFNN_classifier,  output_layer_
dimension,  MSE_value

Step  1:  Initialize  DRBFNN_classifier_parameters,
architectural_  layers

Step  2:  Input  hyperspectral_images  to  neural_
network_input_layer

Step 3: Configure_classifier_layers(Q)
Step 4: for i = 1 to Q do
Set_parameters_for_i-th_deep_hidden_layers
Step  5:  Test  if  parameters  for  all  deep  layers  are

initially  set:
If yes, proceed to Step 6
If no, return to Step 3

Step 6: Evaluate_output_layer_dimension()
Step 7: Execute_training_trial()
Step 8: Assess_MSE_value()
Step 9: Update_network_weights()

(24)

(25)

(26)

(27)

(28)

(29)

(30)

The  last  dense  layer  weights  is  updated  by  the
following  equations:

(31)

(32)

Step 10: Check for stopping condition:
If  minimal  MSE  value  and  improved  classification

accuracy  rate  achieved:
Halt process and return classified_images
Else:
Repeat procedures from Step 6.

3. HYPERSPECTRAL IMAGE DATASETS
This  study  utilizes  four  distinct  hyperspectral  image

datasets to evaluate the efficacy of the novel DBPNN and
DRBFNN  classifiers  [10].  Fig.  (6)  illustrates  the
hyperspectral bands and ground truth information of the
dataset.  These  datasets  consist  of  the  Kennedy  Space
Centre  datasets,  University  of  Pavia  datasets,  Salinas
datasets, and Indian Pine datasets. A detailed presentation
of each dataset is provided below:
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2.3.5. Algorithm: DRBFNN_Classifier_Training



Neural Network Models for Hyperspectral Image Classification 9

Fig.  (6).  Hyperspectral  Bands  and  Ground Truth  Information  (a)  KSC Dataset  (b)  Pavia  Dataset  (c)  Salinas  Dataset  (d)  Indian  Pine
Dataset.
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3.1. Kennedy Space Centre (KSC) Datasets
These  datasets  were  captured  in  1996  by  NASA  in

Florida,  USA,  using  wavelengths  ranging  from  400  to
2500nm and  224  bands.  After  excluding  water-absorbed
entities, 176 bands were utilized for the study. The dataset
encompasses 13 classes representing various land-covered
areas (Table 1), and Fig. (6a) depicts the ground truth.

3.2. University of Pavia Datasets
These datasets  were  acquired from an urban area  in

North Italy, employing a reflective optics spectrographic
image  sensor.  Furthermore,  this  dataset  comprises  103
hyperspectral  bands,  with  each  image  at  a  resolution  of
610x340  pixels  and  a  1.3m  spatial  resolution,  and  is
categorized into 9 classes (Table 2). Fig. (6b) provides the
ground truth information.

Table 1. Overview of KSC dataset.

Labelled Classes Class Category Total Samples Labelled Classes Class Category Total Samples

C1 Scrub 761 C8 Graminoid marsh 431
C2 Willow swamp 243 C9 Spartina marsh 520
C3 Cabbage palm hammock 256 C10 Cattail marsh 404
C4 Cabbage palm/oak hammock 252 C11 Salt marsh 419
C5 Slash pine 161 C12 Mud flats 503
C6 Oak/broadleaf hammock 229

C13 Water 927
C7 Hardwood swamp 105

Total Data samples of KSC dataset 5211

Table 2. Overview of the University of Pavia dataset.

Labelled Classes Class Category Total Samples Labelled Classes Class Category Total Samples

C1 Asphalt 6631 C6 Bare soil 5029
C2 Meadows 18649 C7 Bitumen 1330
C3 Gravel 2099 C8 Self-blocking bricks 3682
C4 Trees 3064

C9 Shadows 947
C5 Painted metal sheets 1345

Total Data samples of Pavia dataset 42776

Table 3. Overview of salinas dataset.

Labelled Classes Class Category Total Samples Labelled Classes Class Category Total Samples

C1 Brocoli green weeds 1 2009 C9 Soil vineyard 6203
C2 Brocoli green weeds 2 3726 C10 Corn senesced green weeds 3278
C3 Fallow 1976 C11 Lettuce romaine 4wk 1068
C4 Fallow rough plow 1394 C12 Lettuce romaine 5wk 1927
C5 Fallow smooth 2678 C13 Lettuce romaine 6wk 916
C6 Stubble 3959 C14 Lettuce romaine 7wk 1070
C7 Celery 3579 C15 Vinyard untrained 7268
C8 Grapes untrained 11271 C16 Vinyard vertical trellis 1807
Total Data samples of Salinas dataset 54129

Table 4. Overview of Indian pine dataset.

Labelled Classes Class Category Total Samples Labelled Classes Class Category Total Samples

C1 Alfalfa 46 C9 Oats 20
C2 Corn-notill 1428 C10 Soybean-notill 972
C3 Corn-mintill 830 C11 Soybean-mintill 2455
C4 Corn 237 C12 Soybean-clean 593
C5 Grass-pasture 483 C13 Wheat 205
C6 Grass-trees 730 C14 Woods 1265
C7 Grass-pasture-mowed 28 C15 Buildings-Grass-Trees-Drives 386
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Labelled Classes Class Category Total Samples Labelled Classes Class Category Total Samples

C8 Hay-windrowed 478 C16 Stone-Steel-Towers 93
Total Data samples of Indian Pine dataset 10249

3.3. Salinas Datasets
These datasets were captured using an AVIRIS sensor

with  a  3.7m  spatial  resolution  over  the  Salinas  Valley,
California, USA. Additionally, it encompasses 217 samples,
excluding  20  water  absorption  bands.  The  ground  truth
includes  16  classes,  such  as  bare  soils,  vegetables,  and
vineyard fields (Table 3). Fig. (6c) illustrates the ground
truth.

3.4. Indian Pine Datasets
These  datasets  were  captured  from  Northwestern

Indiana  using  an  AVIRIS  sensor  with  145  pixels,  224
spectral bands, and wavelengths ranging from 0.4 to 2.5 x
10-6  m.  Moreover,  this  dataset  is  categorized  into  16
classes,  with  bands  reduced  to  200  after  eliminating
water-absorbed areas [11]. The dataset comprises 10249
data  samples,  including  vegetation,  forest,  agriculture,
dual lanes for rail lanes, housing, and built structures with
roads  (Table  4).  Fig.  (6d)  presents  the  ground  truth
information  [12].

These  hyperspectral  image  datasets  exhibit  distinct
features  and  notable  differences  among  them.  Key
distinctions  include  the  use  of  various  sensors,  absolute
variability  in  ground  truth  data  due  to  diverse
geographical  locations,  differences  in  spatial  resolution
and spectral bands for each dataset, and varying labeled
classes  (13,  9,  16,  and  16  for  KSC,  University  of  Pavia,
Salinas’s  dataset,  and  Indian  Pines  dataset  respectively)
[13]. Additionally, ground sample distances differ for each
dataset (18m, 1.3m, 3.7m, and 20m).

To  demonstrate  the  effectiveness  of  the  proposed
DBPNN  and  DRBFNN  classifier  model,  it  undergoes
training, testing, and validation across all these datasets,
each  possessing  its  unique  features.  In  the  data
distribution,  70%  of  samples  are  allocated  for  training,
with the remaining 30% are reserved for testing [14]. To

optimize training metrics, the number of training samples
exceeds  that  of  testing  samples.  The  error  criterion,
represented by Eq. (20), is evaluated for both DBPNN and
DRBFNN  classifiers,  aiming  to  minimize  errors  during
their  run  [15].

4. RESULTS AND DISCUSSIONS
The  proposed  DBPNN  and  DRBFNN  classifiers  are

simulated and validated to demonstrate their efficacy for
the hyperspectral image datasets outlined in Section 1.5.
Both models utilize deep learning with back-propagation
and  radial  basis  functions,  employing  gradient  descent
learning  with  distinct  activation  functions.  The  DBPNN
classifier  comprises  9  layers,  including  input,  7  deep
hidden  layers  (convolutional,  pooling,  flatten,  dense,
dropout,  and  classification),  and  output.  In  contrast,  the
new DRBFNN classifier  features  7  layers,  encompassing
input,  5  deep  hidden  layers,  and  output,  each
incorporating  convolutional,  pooling,  flatten,  dense,
dropout, and classification components. This deep learning
mechanism  enhances  classifier  learning  for  improved
classification  outcomes.

The  devised  classifier  model,  encompassing  DBPNN
and DRBFNN, processes image data samples from the four
hyperspectral datasets: KSC, University of Pavia, Salinas,
and  Indian  Pine.  The  output  neurons  in  the  final  layer
match  the  number  of  classes  (13,  9,  16,  and  16  for  the
respective datasets). Detecting the correct class improves
classification  metrics,  while  iterative  updates  minimize
errors  and  enhance  accuracy.  Training,  testing,  and
validation  occur  in  MATLAB  R2021a,  and  the  results,
along  with  various  parameters  (Table  5),  are  reported.
Both  DBPNN  and  DRBFNN  classifiers  employ  gradient
descent  learning  with  diverse  activation  functions,
iteratively  updating  weighted  interconnections  to
minimize  Mean  Square  Error  (Errormse)  per  Eq.  (20).

Table 5. Evaluation metrics for the novel DBPNN and DRBFNN classifier models.

Classifier Metrics DBPNN Metric Values DRBFNN Metric Values

Learning rate 0.2 0.2
Learning approach Deep learning Deep learning

Learning rule Gradient Descent learning Gradient Descent learning
Activation function Bipolar Tangential sigmoidal activation Gaussian activation function

Convolutional Layers 3 2
Pooling layers 1 1
Dense layers 2 2
No. of epochs Until error convergence Until error convergence
No. of trials 32 32

Layer structure 1-7-1 (Input layer -deep layers-Output layer) 1-5-1 (Input layer -deep layers-Output layer)
Error convergence 10-6 10-6

(Table 4) contd.....
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Table 6. Accuracy of classification with the proposed deep learning classifier model for KSC and Pavia datasets.

Classification Accuracy (Acccl)

Kennedy Space Centre Datasets University of Pavia Datasets

Labelled
Classes Class Category

Proposed
DBPNN

classifier
model

Proposed
DRBFNN
classifier

Model

Labelled
Classes Class Category

Proposed
DBPNN

classifier
model

Proposed
DRBFNN
classifier

Model

C1 Scrub 96.88 96.88 C1 Asphalt 97.65 97.91
C2 Willow swamp 97.45 97.53 C2 Meadows 97.02 97.69
C3 Cabbage palm hammock 96.99 97.82 C3 Gravel 96.99 97.38
C4 Cabbage palm/oak hammock 97.32 98.69 C4 Trees 96.35 98.17
C5 Slash pine 97.44 98.47 C5 Painted metal sheets 97.68 98.47
C6 Oak/broadleaf hammock 97.99 98.02 C6 Bare soil 97.31 98.56
C7 Hardwood swamp 97.67 97.84 C7 Bitumen 97.85 98.34
C8 Graminoid marsh 97.81 98.14 C8 Self-blocking bricks 96.83 97.84
C9 Spartina marsh 96.93 97.37

C9 Shadows 97.54 97.98
C10 Cattail marsh 97.28 97.93
C11 Salt marsh 97.55 98.00
C12 Mud flats 97.39 97.98
C13 Water 97.24 98.26

Tables  6  and  7  present  the  computed  classification
accuracy  for  the  proposed  DBPNN  and  DRBFNN
classifiers  across  hyperspectral  image  datasets  (KSC,
University  of  Pavia,  Salinas,  and  Indian  Pine).  Table  6
focuses  on  KSC  and  Pavia  datasets,  revealing  that,  for
KSC,  DRBFNN  consistently  outperforms  DBPNN,
achieving accuracy rates exceeding 97.5% for classes C6,
C8, and C7. Notably, C4, C5, and C13 exhibit prominent
accuracy  rates  of  98.69%,  98.47%,  and  98.26%,

respectively.  Similarly,  for  the  University  of  Pavia
datasets,  DRBFNN surpasses  DBPNN across  all  labelled
classes,  with  C7  at  97.85%,  C5  at  97.68%,  and  C1  at
97.65%,  achieving  overall  accuracy  higher  than  96%.  In
both KSC and Pavia datasets, the superiority of DRBFNN
over  Deep  BPNN  is  evident,  attributed  to  the  Gaussian
activation function. Specifically, for Pavia's C6, DRBFNN
achieves a notable 98.56% accuracy. The deep radial basis
function  classifier  consistently  demonstrates  superior
classification  for  labelled  classes  in  both  datasets.

Table 7. Accuracy of classification with the proposed deep learning classifier model for salinas and Indian pine
datasets.

Classification Accuracy (Acccl)

Salinas Datasets Indian Pines Dataset

Labelled
Classes Class Category

Proposed
DBPNN

classifier
model

Proposed
DRBFNN
classifier

model

Labelled
Classes Class Category

Proposed
DBPNN

classifier
model

Proposed
DRBFNN
classifier

model

C1 Brocoli green weeds 1 97.33 98.77 C1 Alfalfa 97.84 98.65
C2 Brocoli green weeds 2 97.59 98.64 C2 Corn-notill 98.03 98.04
C3 Fallow 96.88 98.31 C3 Corn-mintill 96.98 98.67
C4 Fallow rough plow 97.41 98.49 C4 Corn 97.15 98.48
C5 Fallow smooth 97.96 98.68 C5 Grass-pasture 96.41 97.96
C6 Stubble 96.88 98.69 C6 Grass-trees 98.84 98.61
C7 Celery 97.43 97.85 C7 Grass-pasture-mowed 97.63 97.51
C8 Grapes untrained 97.67 98.95 C8 Hay-windrowed 97.54 98.60
C9 Soil vineyard 96.85 98.86 C9 Oats 96.81 98.74

C10 Corn senesced green
weeds 96.79 98.78 C10 Soybean-notill 98.77 97.95

C11 Lettuce romaine 4wk 97.38 98.81 C11 Soybean-mintill 98.05 97.99
C12 Lettuce romaine 5wk 97.59 98.88 C12 Soybean-clean 97.48 98.47
C13 Lettuce romaine 6wk 97.81 98.98 C13 Wheat 97.66 98.61
C14 Lettuce romaine 7wk 97.40 98.69 C14 Woods 96.89 97.91



Neural Network Models for Hyperspectral Image Classification 13

Classification Accuracy (Acccl)

Salinas Datasets Indian Pines Dataset

Labelled
Classes Class Category

Proposed
DBPNN

classifier
model

Proposed
DRBFNN
classifier

model

Labelled
Classes Class Category

Proposed
DBPNN

classifier
model

Proposed
DRBFNN
classifier

model

C15 Vinyard untrained 97.29 98.96 C15 Buildings-Grass-Trees-Drives 97.84 98.04
C16 Vinyard vertical trellis 98.14 98.75 C16 Stone-Steel-Towers 98.75 98.18

Table 8. Assessment of mean square error (Errormse) utilizing the proposed deep learning classifiers for KSC
and Pavia datasets.

Mean Square Error (Errormse)

Kennedy Space Centre Datasets University of Pavia Datasets

Labelled
Classes Class Category

Proposed
DBPNN

classifier
model

Proposed
DRBFNN
classifier

model

Labelled
Classes Class Category

Proposed
DBPNN

classifier
model

Proposed
DRBFNN
classifier

Model

C1 Scrub 0.0716 0.0526 C1 Asphalt 0.0618 0.0315
C2 Willow swamp 0.0627 0.0319 C2 Meadows 0.0073 0.0054
C3 Cabbage palm hammock 0.0865 0.0718 C3 Gravel 0.0196 0.0059

C4 Cabbage palm/oak
hammock 0.0540 0.0112 C4 Trees 0.0095 0.0087

C5 Slash pine 0.0641 0.0102 C5 Painted metal
sheets 0.0078 0.0042

C6 Oak/broadleaf hammock 0.0927 0.0905 C6 Bare soil 0.0036 0.0019
C7 Hardwood swamp 0.0681 0.0098 C7 Bitumen 0.00039 0.00018
C8 Graminoid marsh 0.0731 0.0694 C8 Self-blocking bricks 0.0027 0.0011
C9 Spartina marsh 0.0548 0.0219

C9 Shadows 0.00069 0.00046
C10 Cattail marsh 0.0578 0.0369
C11 Salt marsh 0.0621 0.0199
C12 Mud flats 0.0692 0.0072
C13 Water 0.0573 0.0186

Table 7 displays computed classification accuracy results
for  Salinas  and  Indian  Pine  datasets  using  the  proposed
classifiers. On average, the DBPNN and DRBFNN classifiers
achieve  97.40% and 98.69% accuracy  for  Salinas.  Notably,
DBPNN  is  most  effective  for  classes  C16  (98.14%)  and  C5
(97.96%)  in  Salinas.  DRBFNN achieves  over  98% accuracy
for all Salinas class labels, with 97.85% for celery. For Indian
Pines,  DBPNN  and  DRBFNN  reach  mean  accuracies  of
97.67% and 98.27%, respectively.  DBPNN excels for labels
C1,  C6,  C10,  C11,  and  C16  (>98%  accuracy).  DRBFNN
outperforms  for  C1-C4,  C6,  C8-C9,  C12-C13,  C15-C16.
Overall,  DRBFNN consistently outperforms DBPNN in both
Tables  6  and  7,  attributed  to  the  Gaussian  radial  basis
activation  function  with  regularization  ability.

The  classifier  underwent  training  and  testing  for  a
specified number of epochs to achieve minimal mean square
error,  aiming  to  minimize  the  error  defined  in  Eq.  (20).
Tables  8  and  9  show  the  evaluated  mean  square  error
(Errormse)  during  classifier  simulation  for  the  four
hyperspectral  image  datasets.  In  Table  8,  the  proposed
DBPNN  and  DRBFNN  classifiers  achieve  average  mean
square errors of 0.0672 and 0.0347 for the KSC datasets and
0.0126  and  0.00659  for  the  University  of  Pavia  datasets,

respectively. Notably, for both datasets, the new deep radial
basis function neural network classifier attains a lower MSE
value than the deep back-propagation neural network model.
For the Salinas and Indian Pine datasets, the average Errormse

is  0.0571  and  0.02334,  and  0.040775  and  0.03145,
respectively,  using  the  DBPNN  and  DRBFNN  classifier
models.  The  convergence  of  error  values  validates  the
effectiveness  of  the  proposed  classifier  models,  with  the
DRBFNN  classifier  demonstrating  superiority  in
hyperspectral image classification compared to the DBPNN
classifier.

Fig. (7) illustrates image classification for KSC datasets
using  the  proposed  deep  learning-based  back  propagation
neural  network  model  and  radial  basis  function  neural
network model. In Fig. (7a and b), showcase the false color
image and RGB image, respectively. Classification outcomes
for KSC datasets, employing 3DMWCNN [16], GF+CNN [17],
DW-SDA [18], MMS [19], GFO [20], PCA+SSA Classifier [21],
DBPNN, and DRBFNN, are presented in Fig.  (7c  to j).  The
DRBFNN  classifier  demonstrates  superior  classification
accuracy for KSC datasets, as evident in Fig. (7j). The unique
and  superior  results  achieved  with  the  new  classifier  are
confirmed by the distinctly classified image based on labeled
classes.

(Table 7) contd.....
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Table 9. Evaluated mean square error (Errormse) using proposed deep learning classifiers for salinas and Indian
pine datasets.

Mean Square Error (Errormse)

Salinas Datasets Indian Pine Datasets

Labelled
Classes Class Category

Proposed
DBPNN

Classifier
Model

Proposed
DRBFNN
Classifier

Model

Labelled
Classes Class Category

Proposed
DBPNN

Classifier
Model

Proposed
DRBFNN
Classifier

Model

C1 Brocoli green weeds 1 0.0723 0.0664 C1 Alfalfa 0.0945 0.0823
C2 Brocoli green weeds 2 0.0852 0.0048 C2 Corn-notill 0.0761 0.0562
C3 Fallow 0.0104 0.0092 C3 Corn-mintill 0.0349 0.0126
C4 Fallow rough plow 0.0617 0.0129 C4 Corn 0.0107 0.0085
C5 Fallow smooth 0.1029 0.0083 C5 Grass-pasture 0.0912 0.0827
C6 Stubble 0.0713 0.0627 C6 Grass-trees 0.0768 0.0603
C7 Celery 0.1249 0.0087 C7 Grass-pasture-mowed 0.0066 0.0051
C8 Grapes untrained 0.0922 0.0256 C8 Hay-windrowed 0.0309 0.0265
C9 Soil vineyard 0.0602 0.0687 C9 Oats 0.0511 0.0428

C10 Corn senesced green
weeds 0.0105 0.0083 C10 Soybean-notill 0.0104 0.0096

C11 Lettuce romaine 4wk 0.0561 0.0421 C11 Soybean-mintill 0.0771 0.0542
C12 Lettuce romaine 5wk 0.0863 0.0049 C12 Soybean-clean 0.0064 0.0037
C13 Lettuce romaine 6wk 0.0611 0.0418 C13 Wheat 0.0679 0.0455
C14 Lettuce romaine 7wk 0.0078 0.0029 C14 Woods 0.0059 0.0037
C15 Vinyard untrained 0.0048 0.0017 C15 Buildings-Grass-Trees-Drives 0.0057 0.0046
C16 Vinyard vertical trellis 0.0059 0.0045 C16 Stone-Steel-Towers 0.0062 0.0049
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(d)                                          (e)                                     (f) 
Fig. 7 contd.....
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Fig. (7). KSC datasets (a) False color image (b) RGB image. Classification solutions of:
(c) 3DMWCNN [16] (d) GF_CNN [17] (e) DW-SDA [18] (f) MMS [19] (g) GFO [20] (h) PCA+SSA [21] (i) Proposed DBPNN (j) Proposed
DRBFNN classifier.

 
(g)                                (h)                                               (i) 
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Fig. 8 contd.....
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Fig. (8). University of Pavia datasets (a) False color image (b) RGB image. Classification solutions of: (c) 3DMWCNN [16] (d) GF_CNN
[17] (e) DW-SDA [18] (f) MMS [19] (g) GFO [20] (h) PCA+SSA [21] (i) Proposed DBPNN (j) Proposed DRBFNN classifier.

Fig. (8) showcases classified images for the University
of  Pavia  datasets  utilizing  the  proposed  DBPNN  and
DRBFNN  classifiers  developed  in  this  study.  In  Fig.  (8a
and  b),  the  false  color  and  RGB  images  are  presented,
respectively. The classification outcomes for University of
Pavia  datasets  by  3  DMWCNN [16],  GF+CNN [17],  DW-
SDA [18],  MMS [19],  GFO [20],  PCA+SSA [21],  DBPNN,
and  DRBFNN  classifiers  are  displayed  in  Fig.  (8c  to  j).
DRBFNN,  featuring  Gaussian  non-linear  activation,
achieves superior classification accuracy for the University
of  Pavia  datasets,  as  evident  in  Fig.  (8j).  The  image
classification  based  on  labeled  classes  with  the  new
DRBFNN classifier surpasses other compared classifiers.

Fig.  (9a,b)  illustrates  image  classification  results  for
Salinas  datasets.  A  comparison  of  classified  images  by
various classifiers (3DMWCNN [16],  GF+CNN [17],  DW-
SDA [18],  MMS [19],  GFO [20],  PCA+SSA [21],  DBPNN,
and DRBFNN) is presented from Fig. (9c to j). Notably, in
Fig. (9j), the proposed DRBFNN classifier exhibits highly
superior  classification  for  Salinas  datasets,  attributed  to
the Gaussian non-linear activation function. Similarly, for
Indian  Pine  datasets,  Fig.  (9j)  distinctly  showcases  the
superior  performance  of  the  new  DRBFNN  classifier

compared  to  all  other  classifiers  considered.  The
DRBFNN,  with  Gaussian  activation  function,  achieves
better accuracy (Acccl) and minimized error (Errormse) for
numerous  labelled  classes  in  the  Indian  Pines  dataset,
surpassing  other  classifiers  in  the  comparison  set.

5. COMPARATIVE AND STATISTICAL ANALYSIS
In  training  the  newly  developed  deep  learning

classifier  for  hyperspectral  image  datasets  (KSC,
University of Pavia, Salinas, and Indian Pine), the data are
partitioned  into  training  (60%),  testing  (20%),  and
validation (20%) sets. Uniform data distribution is ensured
across  all  sets  through  basic  regression,  defining  class
boundaries  uniformly.  The  proposed  deep  learning
classifiers undergo training, testing, and calibration for all
considered  datasets.  5-fold  cross-validation  is  employed,
dividing  the  20% testing  data  equally  into  five  parts  for
validation  in  each  iteration  (Fig.  10a-j).  Fig.  (11)  illus-
trates  the  5-fold  cross-validation  process.  Accuracy  is
evaluated  and  tabulated  for  all  datasets  using  the
proposed  models.  To  validate  the  superiority  of  the
developed DBPNN and DRBFNN classifiers, comparisons
are made with various classifier approaches, including

 
(g)                                          (h)                                       (i) 

 
(j) 
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3D  multi-resolution  wavelet  convolutional  neural
networks [16]
Gabor filtering and convolutional neural network [17]

Dual-Window Superpixel Data Augmentation [18]
Modified-mean-shift-based noisy label detection [19]
Gradient Feature-Oriented 3-D Domain Adaptation [20]
PCA and segmented-PCA domain multi-scale 2-D-SSA [21]

Fig. (9). Salinas datasets (a) False color image (b) RGB image. Classification solutions of: (c) 3DMWCNN [16] (d) GF_CNN [17](e) DW-
SDA [18] (f) MMS [19] (g) GFO [20] (h) PCA+SSA [21] (i) Proposed DBPNN (j) Proposed DRBFNN classifier.

 
                    (a)                                        (b)                                     (c) 

 
                    (d)                                       (e)                                      (f) 

 
                 (g)                                             (h)                                   (i) 

 
                                                         (j)     
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Fig. (10). Indian Pine datasets (a) False color image (b) RGB image. Classification solutions of: (c) 3DMWCNN [16] (d) GF_CNN [17](e)
DW-SDA [18] (f) MMS [19] (g) GFO [20] (h) PCA+SSA [21] (i) Proposed DBPNN (j) Proposed DRBFNN classifier.

 
(a)                                           (b)                                          (c) 

 
(d)                                               (e)                                         (f) 

 
(g)                                                 (h)                                        (i) 

 
(j) 
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Fig. (11). 5-fold cross-validation for HSI classification.

Table 10. Comparative analysis of evaluated Mean Acccl with earlier state-of-the-art techniques.

Average Classification Accuracy (%)

Classifiers for Comparison from State-of-the-art
Techniques/Refs. KSC Datasets Pavia University

Datasets Salinas Dataset Indian Pine Datasets

3DMWCNN classifier [16] 96.22 95.91 97.17 94.28
GF+CNN approach [17] 97.60 96.95 98.06 82.54
DW-SDA approach [18] 95.42 93.69 97.04 97.23

MMS technique [19] 74.43 96.11 90.44 97.13
GFO learning model [20] 87.09 93.94 92.58 72.51
PCA+SSA classifier [21] 94.74 97.85 98.64 96.13

Proposed DBPNN Classifier 97.38 97.25 97.40 97.67
Proposed DRBFNN Classifier 97.91 98.04 98.69 98.27

Table 10 presents a comparison of mean classification
accuracy  across  the  four  hyperspectral  image  datasets,
evaluating the proposed DBPNN and DRBFNN classifiers
against  state-of-the-art  models.  For  the  KSC,  Pavia,
Salinas,  and  Indian  Pine  datasets,  the  average  accuracy
(Acccl)  with  DBPNN  is  97.38%,  97.25%,  97.40%,  and
97.67%,  and  with  DRBFNN  is  97.91%,  98.04%,  98.69%,
and  98.27%,  respectively.  These  results  affirm  the
superior  mean  classification  accuracy  of  the  developed
DRBFNN  classifier,  outperforming  techniques  and  even
surpassing  the  proposed  DBPNN.  Table  10  records
average accuracy values for each dataset, emphasizing the
significance  of  the  activation  function  for  improved
classifier  performance.  The  distinctive  features  of  each
hyperspectral  image  dataset  align  with  specific  deep
learning  models,  ensuring  better  accuracy  metrics  with
minimal error.

Table 11 details the elapsed training and testing times

during  MATLAB  simulation  for  both  deep  learning
classifiers  across  four  hyperspectral  image  datasets.
Comparative analysis reveals that 3DMWCNN, DLEM, and
Deep  ELM  classifiers  exhibit  higher  times  than  other
approaches.  Using  the  developed  DBPNN  classifier,  the
KSC  dataset,  Pavia,  Salinas,  and  Indian  Pine  exhibit
training  times  of  3.96s,  4.96s,  9.68s,  and  6.22s,  and
testing  times  of  3.55s,  3.11s,  4.01s,  and  3.24s,
respectively.  The  modelled  DRBFNN  classifier  shows
shorter training times of 3.01s, 3.81s, 6.25s, and 5.03s and
testing times of 2.86s, 2.79s, 3.49s, and 2.99s. Higher-end
processors  contribute  to  faster  execution,  reducing
computational time during algorithm training and testing.
Additionally,  Table  11  outlines  the  elapsed  training  and
testing epochs, indicating 21, 24, 29, 34, and 15, 13, 17,
and 18  epochs  for  DBPNN across  the  four  datasets.  For
DRBFNN, the epochs are 17, 21, 27, 29, and 12, 12, 17,
and 16 for training and testing across KSC, University of
Pavia, Salinas, and Indian Pine Datasets, respectively.
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Table 11. Average training and testing execution time with different techniques.

Hyperspectral
Image Samples

Existing and Proposed Classifiers for
Comparison

Training Time
(sec)

Testing Time
(sec)

Training
Epochs Elapsed

Testing
Epochs
Elapsed

KSC Datasets

3DMWCNN classifier 52.71 19.60 123 37
GF+CNN approach 26.78 11.76 93 29

Deep-ELM technique 32.34 4.61 117 51
DD+SRM classifier 30.98 12.30 63 32
DW-SDA approach 48.17 8.70 44 26

DLEM classifier 62.45 19.81 39 23
MMS technique 13.62 12.22 52 25
FCSPN classifier 9.81 9.45 37 19

GFO learning model 4.22 3.82 25 16
Proposed DBPNN 3.96 3.55 21 15

Proposed DRBFNN 3.01 2.86 17 12

Pavia University
Datasets

3DMWCNN classifier 36.71 21.45 109 38
GF+CNN approach 24.97 16.59 77 31

Deep-ELM technique 18.20 15.56 147 43
DD+SRM classifier 14.46 9.42 82 45
DW-SDA approach 27.81 16.11 51 29

DLEM classifier 32.29 21.13 47 23
MMS technique 16.75 10.84 38 17
FCSPN classifier 9.26 7.64 35 17

GFO learning model 5.29 3.36 27 13
Proposed DBPNN 4.96 3.11 24 13

Proposed DRBFNN 3.81 2.79 21 12

Salinas Dataset

3DMWCNN classifier 56.92 18.47 136 57
GF+CNN approach 49.26 2.46 112 49

Deep-ELM technique 27.81 10.27 127 53
DD+SRM classifier 19.82 9.65 92 37
DW-SDA approach 21.59 16.38 85 27

DLEM classifier 30.42 20.36 61 38
MMS technique 36.57 18.75 55 26
FCSPN classifier 18.33 6.63 48 21

GFO learning model 12.64 4.58 32 17
Proposed DBPNN 9.68 4.01 29 17

Proposed DRBFNN 6.25 3.49 27 17

Indian Pine
Datasets

3DMWCNN classifier 67.92 18.54 105 51
GF+CNN approach 50.26 2.85 96 47

Deep-ELM technique 36.57 14.52 65 34
DD+SRM classifier 24.19 9.45 88 37
DW-SDA approach 31.64 7.84 56 29

DLEM classifier 27.84 6.98 72 31
MMS technique 33.65 9.87 47 26
FCSPN classifier 16.48 7.01 42 20

GFO learning model 8.45 3.69 39 18
Proposed DBPNN 6.22 3.24 34 18

Proposed DRBFNN 5.03 2.99 29 16

Table  12  presents  sensitivity  and  statistical  analysis
metrics  for  the  new  DBPNN  and  DRBFNN  classifiers
across all four HSI datasets. Sensitivity analysis, assessing
the impact of input variables on dependent parameters, is
conducted by observing changes in training mean square
error upon removing inputs [22]. Delta error and average
absolute gradient indicate ranking performance and input
perturbation  monitoring,  respectively,  and  demonstrate

minimal values for all datasets using the proposed DBPNN
and DRBFNN classifiers. Statistical validation, employing
correlation coefficient and determination measure, yields
values close to 1 across the tested HSI datasets, affirming
the  validity  of  the  proposed  deep  learning  classifier
algorithm.

The  delta  error,  representing  the  disparity  between
target and output values for system input variables,
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Table 12. Sensitivity and statistical analysis of new DL-FTPSVM classifier.

Proposed
Classifiers Datasets

Sensitivity Analysis Statistical Analysis

Spectral
Band and Step Size Delta Error Average Absolute

Gradient
Correlation
Coefficient Determination Measure

DBPNN
Classifier

KSC Datasets [5, 50] with
step 5 0.0065 0.1980 0.9896 0.9961

University of Pavia dataset [5, 50] with
step 5 0.0059 0.1249 0.9937 0.9959

Salinas dataset [10,100] with step 10 0.0061 0.1045 0.9979 0.9890
Indian Pine Datasets [10,100] with step 10 0.0033 0.0992 0.9901 0.9927

DRBFNN
Classifier

KSC Datasets [5,50] with
step 5 0.0057 0.1761 0.9915 0.9966

University of Pavia dataset [5, 50] with
step 5 0.0052 0.1096 0.9927 0.9939

Salinas dataset [10,100] with step 10 0.0046 0.0913 0.9936 0.9886
Indian Pine Datasets [10,100] with step 10 0.0029 0.0905 0.9899 0.9903

gauges convergence, and model accuracy in the developed
deep  neural  network.  Minimal  delta  error  ensures
convergence,  enhancing  generalization  and  learning.
Table 12  reveals  delta  errors  of  0.0057,  0.0052,  0.0046,
and  0.0029  for  KSC,  University  of  Pavia,  Salinas,  and
Indian  Pine  datasets,  respectively,  with  the  deep  radial
basis  function  neural  network  classifier.  These  values,
within  the  range  of  10-3,  affirm  minimized  error  during
deep  training,  confirming  robust  learning  and
generalization  in  the  proposed  classifiers.  The  average
absolute  gradient,  derived  during  the  application  of
gradient  descent  learning,  reflects  the  error  gradient's
impact on classification accuracy. Table 12 reports values
of 0.1761, 0.1096, 0.0913, and 0.0905 for KSC, University
of  Pavia,  Salinas,  and Indian Pine datasets,  respectively,
with  the  DRBFNN  classifier.  The  minimal  absolute
gradient underscores the classifier's effectiveness, which
is  rooted in  the error  gradient  within  the weight  update
mechanism of the gradient descent learning rule.

CONCLUSION
This  case  introduces  innovative  deep  learning

classifiers,  including a  back  propagation  neural  network
(DBPNN)  and  a  radial  basis  function  neural  network
(DRBFNN),  for  hyperspectral  image  classification.  The
DBPNN  incorporates  deep  auto-encoders  and  decoders,
featuring  a  nine-layer  architecture,  and  undergoes
training, testing, and validation using KSC, University of
Pavia,  Salinas,  and  Indian  Pine  datasets.  The  DRBFNN,
with  a  seven-layer  architecture  and  Gaussian  activation
function,  demonstrates superior  efficacy in  classification
accuracy  and  mean  square  error  during  training
convergence. Both classifiers surpass previous models in
accuracy  and  error  minimization.  Notably,  the  DRBFNN
outperforms the DBPNN and other models. Statistical and
sensitivity  analyses  reveal  insights  into  input
perturbations and classified outputs. Future research aims
to  extend  this  work  by  exploring  novel  deep  recurrent
neural  network  classifiers,  aiming  to  simplify  structural
complexity  and  leverage  memory  states  from  previous
layers.  Limitations  of  this  study  include  the  potential
limited  generalizability  of  the  proposed  deep  learning

models, DBPNN and DRBFNN, beyond tested datasets, as
well  as  uncertainty  regarding  optimal  hyperparameter
selection, computational resources, and evaluation metrics
capturing  the  nuances  of  hyperspectral  image
classification.  To  address  these  limitations,  further
validation  of  diverse  datasets,  sensitivity  analyses  on
hyperparameters, comprehensive computational resource
analysis, and exploration of additional evaluation metrics
are recommended.
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