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Abstract:

Background:

Heart  disease  prediction  model  helps  physicians  to  identify  patients  who  are  at  high  risk  of  developing  heart  disease  and  target  prevention
strategies accordingly. These models use patient demographics, medical history, lifecycle factors, and clinical measurements to calculate the risk of
heart disease within a certain time frame. In identifying important features of heart disease, a popular approach is using Machine learning (ML)
models. ML models can analyse a large amount of data and find patterns that are difficult for humans to detect.

Methods:

In this proposed work, Random Forest classifier is used to identify the most important features that contribute to heart disease and increase the
prediction accuracy of the model by tuning the hyperparameters using grid search approach.

Results:

The proposed system was evaluated and compared in terms of accuracy, error rate and recall with the traditional system. As the traditional system
achieved accuracies between 81.97% and 90.16%., the proposed hyperparameter tuning model achieved accuracies in the range increased between
84.22% and 96.53%.

Conclusion:

These evaluations demonstrated that the proposed prediction approach is capable of achieving more accurate results compared with the traditional
approach in predicting heart disease by finding optimum features.

Keywords: Grid search optimization (GSO), Machine learning(ML), Random forest (RF), Hyperparameter tuning, Heart disease, Feature selection
(FS).
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1. INTRODUCTION

In recent years, data science has contributed a significant
role  in  the  healthcare  industry  by  providing  better  Machine
learning tools for predicting chronic diseases. Heart disease is
one of the common ailments suffered by ordinary people [1].
According to the World health organization, the mortality rate
of  heart  disease  patients  is  nearly  17.9  million  every  year,
which  is  a  leading  death  rate  worldwide  [2].  For  diagnosing
and building better clinical decision support, ML models can
be  deployed  to  mitigate  the  disease  by  understanding  the
symptoms of heart disease based on the relevant feature sets
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[3]. Machine learning has emerged with practical techniques to
make predictions from a large pool of data. Its analytical tool
gives  a  solution  when  predicting  complex  diseases  like
knowledge transformation of medical records, cardiac diseases,
and  gene  data  analysis  [4  -  6].  Machine  Learning  (ML)
comprises learning algorithms explored on the existing data to
discover the hidden pattern, and the rules of learning models
used to predict the occurrence and non-occurrence of the target
data, particularly in the research area [7]. This ML algorithm
works  with  noisy  data  as  well.  ML  model  ranks  different
features depending upon their  relevance to the paradigm and
assign  some  weights  during  the  learning  process  [8  -  12].
Predominantly ML harnesses both supervised and unsupervised
learning methods. The former learning technique produces the
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best  relationship  and  dependencies  between  the  prediction
output  and  the  trained  set's  input  features.

Thus  producing  predicted  output  for  the  new  dataset.
Though many ML models have been explored [13, 14] and are
perhaps  successful  in  their  analysis,  predicting  heart  disease
emerges as a significant paradigm that needs improved models
and methods. This prediction comes under supervised learning
using  classification  techniques  to  learn  the  relationship  and
dependency amidst features and the target class [14 - 19].  In
machine learning, hyperparameter tuning is proclaimed to train
the  model.  The  problem  dwells  in  choosing  the  optimal
hyperparameters.  In  this  concern,  Random  Forest  plays  a
significant  role  in  predicting  the  target  values.  RF  is  an
ensemble  model  constructed  from  a  set  of  independent  and
distinct  decision  trees  based  on  the  randomization  technique
using  a  random  vector  parameter  that  selects  the  features
randomly in the training set  [20 -  22].  Generally,  the feature
selection technique handles high dimensional dataset [23] that
requires  huge  memory  leading  to  an  overfitting  problem.
Weighted  features  can  be  selected  to  improve  model
performance  and  reduce  processing  time  [24  -  31].  Thus
selecting  a  small  number  of  relevant  features  reduces  the
dimension  of  the  data  set  using  feature  selection  [32]  and
extraction by transforming and removing unwanted data using
Grid optimization methods.

In  the  proposed model,  the  motivation of  this  work is  to
identify  the  essential  features  by  tuning  the  hyperparameters
during feature selection and improving the performance of the
classifiers deploying grid search methods. Optimal parameters
are chosen during the tuning process and thus predicting heart
disease.

The contribution of the proposed work is listed below:

Three grid search methods, such as best-random, first
grid, and second, are constructed in the initial phase.
In the second phase, the hyperparameter tuning process
is  carried  out  with  Grid  search  and  random  search
models by fixing the baseline parameters.
In  the  third  phase,  the  feature  extraction  and  feature
selection process with the cross-validation method is
implemented.
After selecting optimal parameters, the best model is
determined  by  validating  with  parameters  such  as
runtime,  mean  error,  and  accuracy.
In the final phase, the classification accuracy of the RF
model is enhanced with the best grid model.

2. LITERATURE SURVEY

The  authors  proposed  deep  learning  methods,  Logistic
regression,  SVM  and  RF  models.  They  explored  the  heart
disease data by tuning the hyperparameter with relevant feature
selection and producing more than 78% accuracy [33].

They  have  proposed  generalized  discriminant  analysis
(GDA)  to  classify  15  features  with  an  HRV  signal.  The
features have been reduced to 5 sets using the GDA model and
produced a 100% precision result with an SVM classifier [34].

An effective technique to speed up the performance of the

model  by  hyperparameter  tuning  using  Grid  search
implemented on text data with a kNN algorithm. The model is
tuned with three parameters using BM25 similarity [35].

Authors implemented the Naïve Bayes algorithm to predict
heart  disease  patients  and  proposed  a  novel  Heart  Disease
Prediction  System (HDPS)  system [36  -  38].  The  author  has
examined specific parameters and predicted Heart disease by
deploying a K-mean clustering algorithm [39].

Bayesian  hyperparameter  optimization  algorithm  was
proposed to improve the model [40]. This Bayesian model is
used for hyperparameter tuning that obtains optimized values
with  less  consumption  time  and  performance  improvement,
thus achieving global optimization.

Authors  proposed  Enhanced  Bat  Optimization  (EBO)
algorithm to select appropriate features from the gene dataset.
A subset of significant genes is selected using the bat algorithm
associated  with  Hilbert  Schmidt  Independence  Criterion
(HSIC)  measure  [41].

The  authors  proposed  a  system  by  tuning  the
hyperparameters to predict heart disease [42]. The performance
of the model was enhanced using the grid search approach with
five Logistic  regression,  K-Nearest  Neighbor,  support  vector
machine, decision tree, and random forest. The metrics used to
evaluate  the  performance  of  the  algorithms  were  precision,
recall and F1_Score [43 - 49].

A  framework  was  designed  with  five  algorithms:  RF,
Naïve Bayes, SVM, Hoeffding DT, and Logistic Model Tree.
The heart disease classification was carried out by selecting the
best  features  from the dataset  by obtaining 81.24% accuracy
[50].

Authors  devised  a  prediction  model  with  a  finely  tuned
technique  that  identified  the  key  features.  A  classification
model  was  constructed  using  RF,  SVM  and  DT  models  that
produced higher predictive accuracy [51].

Researchers proposed a deep learning model using Neural
Network (NN) for classifying electrocardiogram(ECG) signals
for  selecting  the  relevant  set  of  features  and  enhancing  the
performance of the classifier [52].

A clinical decision support system (CDSS) was proposed
to  analyze  heart  failure.  The  author  implemented  machine
learning algorithms like neural network (NN), support vector
machine (SVM), classification, and regression. (CART) with
fuzzy rules and random forests (RF) and the CART model and
RF produced 87.6% accuracy [53].

Authors  deployed  the  SVM  model  for  diagnosing  heart
disease  patients  with  diabetes.  The  author  obtained  94.60%
accuracy by predicting the significant features considering age,
blood pressure and sugar [54].

They proposed a cardiovascular feature reduction process
by  implementing  the  Fisher  ranking  method,  discriminant
analysis (DA), and binary classification with extreme learning
method (EML). The model obtained an accuracy of 100% in
detecting heart disease [55].

An  automatic  classification  in  analyzing  cardiac
arrhythmia  with  linear  and  non-linear  with  dimensional
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reduction models under unsupervised learning using a neural
network (NN) classifier was carried out and achieved 99.83%
of F1-score using fast ICA algorithm with only 10 components
[56].

Researchers  have  made  a  complete  analysis  of  different
feature  selection  techniques.  Various  functional  issues  of
feature  selection  algorithms  have  been  in  terms  of
dimensionality reduction and classification accuracy [57 - 63].
They demonstrated a new perspective feature selection process
from the adaptable reconstruction graph and feature subset [64
-  69].  Authors  minimize  the  tuning  issues  of  several
optimization methods in feature selection-based data analysis
by  selecting  features  from  Binary  Teaching  and  Learning
Optimization technique (BTLO) [70 - 76] where the size and
number  of  subsets  generated  are  the  control  variables.  They
found  that  the  loss  of  data  occurred  in  a  conventional  SVM
method  where  feature  extraction  and  parameter  tuning  were
done independently [77]. In order to overcome this, a convex
energy  dependent  system  is  proposed  where  the  feature
selection  and  parameter  tuning  are  integrated  [78].

Authors  have  initiated  an  unsupervised  feature  selection
framework for social media data [79]. In this paper, under the
unsupervised case, the problems of feature selection in social
media data are investigated.

The proposed method increases the model performance by
implementing  a  grid  optimization  model  in  a  random search
using  a  cross-validation  technique.  Section  2  elucidates  the
proposed methodology with three models: best-random using
cv  method,  First-grid  with  cv  and  Second-grid.  Section  3
exemplifies  the  results  and  discussion  phase,  and  section  4
summarizes the proposed method.

3. PROPOSED METHODOLOGY

The  proposed  work  is  organized  with  three  models  for
optimal  feature  selection  in  predicting  heart  disease.  Feature
selection plays a significant role in predicting the disease. The
factors  that  increase  the  risk  of  heart  disease  include
triglyceride,  high  cholesterol  [80  -  83],  and  American  Heart
Association  [84]  indicates  that  body  mass  index  (BMI),  leg
swelling, chronic cough and high blood pressure [85]. Feature
extraction  is  carried  out  by  tuning  the  parameters  using  the
Grid  search  algorithm  to  select  optimum  attributes.  The
scheduled  model  is  explored  on  the  heart  disease  dataset
(Cleveland dataset) collected from the UCI machine learning
repository.  The  dataset  consists  of  14  features  with  303
instances  where  300  instances  are  taken  for  analysis.  The
characteristic features, along with their description and range
of values, are outlined in Table 1.

Fig. (1). The architecture of the proposed method.

Table 1. Characteristics of cleveland dataset.

Features Description Ranges
Age Age (in years) 30–92
Sex Gender 1: male; 0: female
BMI Body mass index 15.302–41.304
Cholesterol Blood Cholesterol level 79–525
HDL High-Density Lipoprotein 22–118
SBP Systolic blood Pressure 75–219



4   The Open Biomedical Engineering Journal, 2023, Volume 17 Saranya and Pravin

Features Description Ranges
DBP Diastolic blood Pressure 10–137
Triglyceride Teen’s body fat 20–1868
Haemoglobin Haemoglobin 7–19
TD Thyroid disease Categorical – yes, no
CRF chronic renal failure Categorical – yes, no
Cirrhosis Cirrhosis Categorical – yes, no
Smoking Smoking habit Categorical – yes, no

The  relevant  (important  features)  from  the  dataset  are
extracted during the grid search, and the model is trained using
hyperparameters to perceive the optimal model. The schemed
model contemplates recall measure, and the model is trained to
reduce  the  false-negative  rate  during  classification  using  the
Random Forest. The method is designed with three phases. 1.
Construction  of  RF  Model  2.  Hyperparameter  Tuning  3.
Validation phase. The architecture of the prompted framework
is delineated in Fig. (1). Three models are validated with cross-
validation to extenuate the overfitting paradigm. The average
accuracy,  average  error,  runtime,  validation  score,  and  train
time are computed for all three models for determining the best
parameters  from  the  best  model  to  increase  the  recall  ratio
during classification.

3.1. Construction of RF Model

Random  Forest  (RF)  is  an  ensemble  learning  model  for
classification  and  regression  constructed  using  multiple
decision trees. Bootstrap is employed to maximize the diversity
of  each  tree.  In  RF,  each  decision  tree  is  trained.  Let  the
training set is taken as Td = {(x1, y1), (x2, y2) …. (xn,yn)}. Td
is  the  training  data  for  each  decision  tree  Dt  and  let  E(x)
represents the estimation result on sample x then,

(1)

Each node in the bootstrap tests the particular features, and
finally,  the  leaf  node  represents  the  output.  The  aggregated
results of all bootstrap sets are expressed as:

(2)

Where  Z  is  the  average  output  of  n  trees,  Zix  ,  is  the
corresponding prediction for the input x. The number of trees is
split  into  100,200,  300  from  the  Cleveland  dataset  in  the
proposed  model.  After  splitting  trees  into  binary  nodes,  the
splits  are  investigated  to  remove  the  impurities  from  the
resulting tree, and the optimal split is selected. This splitting is
done as follows:

(3)

Where  sldenotes  the  split  portion  at  node  t,  ∆ipsl,t
represents  the  impurity  reduction  measure,  ipt  denotes  the
occurrence of impurity before splitting the training dataset and
iTl -iTr represents the impurities after splitting between both
the  left  node  and  right  node  with  the  proportion  pr.  The
proposed work is framed with three models. Best-random from
random  search  with  cross-validation,  First-grid  search  with

cross-validation  and  Second-grid  search.  In  the  first  design
pattern model, the randomized search is proclaimed using the
cross-validation method, where 7 essential features are selected
from 14 features Fig. (2) by defining the ranges and sampling
randomly from the grid with 5 fold CV for each combination of
the sample. A randomized parameter grid is created to sample
from  the  distribution  during  fitting.  The  proposed  model  is
compared  with  the  base  model  using  the  test  features  and
predictions  to  determine  whether  the  random  search  has
yielded a better result. Similarly, the other two models are also
constructed  in  the  meantime  and  evaluated  using  the  base
model.

3.2. Hyperparameter Tuning

In  the  proposed  work,  a  hyperparameter  is  used  to  set
before  training the  model.  For  Random Forest  classification,
four parameters such as the number of trees, depth of the tree, a
minimum  number  of  samples  and  the  minimum  number  of
samples  present  at  leaf  node  shown  in  Fig.  (3).  These
parameters are adjusted to determine which features to modify
or retain from the dataset and those features are extracted after
tuning. Initially, baseline parameters are set as default values.
In  the  grid  search  model,  the  number  of  trees  is  10  with  10
levels. 2 to 10 data samples are considered for splitting a node.
Then the random grid is created using 5 fold cross-validation
with 100 different  combinations.  For  more tuning,  a  second-
round random search is established for moderating the number
of features by tuning the hyperparameters. Parameter selection,
splitting the trees and selecting the samples for training the tree
are  described  in  the  Grid  Search  Algorithm.  In  the  RF
classifier, parameter tuning is an essential factor for improving
model performance. In the suggested method, six parameters
such as n_estimators, Min-Leaf samples, Max-features, Max-
depth,  min-samp-split  and  bootstrap.  Initially,  the  value
n_estimators  is  set  as  10.  Min-Leaf  samples  portray  the
minimum  number  of  samples  at  the  end  of  the  search.  Its
values  are  fixed  as  1.  A  third  and  fourth  hyperparameter  is
exploited to solve the overfitting of the training data. The tree
min-samp-split  parameter  is  tuned  to  regularize  it.  The  last
parameter, bootstrap, is set as the default value.

3.3. Validation Steps

All three models are evaluated using average accuracy and
average  errors,  along  with  performance  and  compared  to
determine  the  best  model's  best  parameters  [86  -  92].
Generally,  a  random  search  narrows  down  the  parameter
ranges. Instead of sampling randomly, all the combinations of
the  parameters  can  be  evaluated  to  determine  the  best
parameters provided by the random search. If the performance

𝐸(𝑋) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌 ∑ 𝐷𝑡
𝑇
𝑡=1

(𝑥) = 𝑦)

𝑍 =  
1

𝑛𝑡𝑟𝑎𝑖𝑛
 ∑ 𝑍𝑖  

𝑛𝑡𝑟𝑎𝑖𝑛
𝑖=1 (x)

∆𝑖𝑝(𝑠𝑙, 𝑡) = 𝑖𝑝(𝑡) − 𝑝𝑟[𝑖(𝑇𝑙   ) − 𝑖(𝑇𝑟)]  

(Table 1) contd.....
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decreases, then the hyper meter tuning is formulated. Features
are  selected  corresponding  to  the  hyperparameter  tuning.
Moreover,  the  feature  importance  is  evaluated  for  obtaining

model  accuracy.  In  the  proposed  model,  7  features  are
deliberated to speed up the accuracy of the model. The steps of
the Grid Search Algorithm are as follows:

Fig. (2). Important feature selection from cleveland dataset.

Fig. (3). Data flow of grid search optimization.
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3.4. Algorithm for Grid Search

Step  1:  Initialize  the  params;  n_estimators,  M_features,
M_depth, m_samsplit, m_samleaf, bootstrap

Step 2: Create a Parameter Grid

Step 3: Create a Base model (default model)

Step 4: Initiate Grid search model with params (rf, param-
grid, cv, n_jobs, verbose)

Step 5: Find Grid Search with train_features, train_labels

Step 6: Compute the best grid.

Step 7: Print best param.

After evaluating the model, the data samples are examined
for  predicting  the  true  positive  (TPv),  true  negative  (TNv),
false positive (FPv) and False-negative (FNv). The propounded
model  addresses  the Recall  measure where the True positive
rate  is  increased  by  reducing  the  false  negatives.  A  recall  is
calculated as:

(4)

Among the three models, the second grid model produces
higher accuracy with a minimum error rate when compared to
the other two models and produces higher recall  results  with
the Random Forest classifier. The comparison of the Random
classifier  before and after grid search is  obtained in Table 2.

The  heart  disease  dataset  with  300  instances,  correctly  and
incorrectly  classified,  is  portrayed  in  the  table,  showing  that
grid optimization enhances RF classifier performance.

Among  300  instances,  it  is  explicitly  shown  that  291
instances  are  correctly  classified.  The  number  of  incorrect
classifications is reduced after the grid search optimization by
tuning n_estimators and min-samp-split, revealing that the Grid
search model improves the performance of the RF classifier.

4. RESULTS AND EXPERIMENTS

In  the  proposed  model,  the  initial  tree  is  set  as  10,
considering  the  performance  of  the  model  and  its  execution
cost. 50 intervals increase the number of trees to speed up the
performance of the model, such as 50, 100, 150, 200, 250 and
300.  The  train  time  varies  for  each  set  of  trees,  and  it
dramatically  increases  for  every  additional  50  number  trees
shown  in  Fig.  (4).  Simultaneously,  the  train  time  remains
constant during the extraction of maximum features (Fig. 5). In
this concern, it is essential to check for optimization values of
the  corresponding  hyperparameters  with  a  validation  curve.
Table  3  depicts  the  train  time,  validation  score  and  training
score  for  the  number  of  trees.  The  validation  scorestreaks  at
n=10 and starts fluctuating throughout the decision tree's entire
traverse  and  explicate  minimum  variation  from  the  training
score.  The  hyperparameters  such  as  n-estimators  and  min-
samples  –split  are  tuned  to  improve  the  performance  of  the
Random Forest.

Table 2. RF performance before and after grid search optimization.

No. of Instances
Before Grid Search After Grid Search
Correctly Classified Incorrectly Classified Correctly Classified Incorrectly Classified

300 252 48 291 9

Fig. (4). Number of trees vs train time.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃𝑣

𝑇𝑃𝑣 + 𝐹𝑁𝑣
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Fig. (5). Maximum features vs train time.

Fig. (6). Validation score with RF-grid search.

Table 3. Performance score of RF with grid-search.

No. of Trees Train Time(Secs) Validation-Score Train-score
100 0.25 0.94 0.99
150 0.39 0.93 0.99
200 0.45 0.94 0.99
250 0.52 0.93 0.99
300 0.65 0.94 0.99

Generally,  the  model  is  optimized  on  training  data  to
produce  a  better  score,  but  on  the  other  hand,  if  the  model
performs very well on the training set,  it  might provide poor
results  on  a  test  set  in  some  cases.  This  kind  of  overfitting
paradigm can be  solved by the  cross-validation method.  The
hyperparameter  optimization  works  well  for  overfitting  only
through the cv technique. Initially, the model fits k=5, training
the four folds and finally evaluating the fifth fold. The model is

trained on 1,2, 3 and 5th fold during the second turn, evaluating
the fourth fold. This process is repeated 5 times, evaluating the
new fold. At the end of every fold, the average performance is
evaluated.  The  number  of  trees  is  trained  in  the  proposed
model, and accuracy of the cv score is probably nearer to the
training score (Fig. 6). This validation is pursued to reduce the
overfitting problem on the test data. The histogram plot of 14
attributes concerning the range values is presented in Fig. (7).
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To  select  the  relevant  features  showing  high  correlation  are
selected and extracted using the grid search model. Thus seven
features  are  chosen  as  essential  features  that  increase  the
hyperparameters,  such  as  n-estimators  and  min-samp-split.
These  features  satisfy  the  classification  performance  in
increasing  the  right  positive  rate.

Table  4  shows  the  performance  measure  of  optimization
models  concerning  the  number  of  features  extracted  and
several trees taken for the grid search method. The table shows
the  three  models  explored  on  data  samples  with  7  essential

features for the optimization method. The first two models are
carried with cross-validation and the second grid without cross-
validation  produces  good  results  compared  to  the  other  two
models.

The  corresponding  graph  concerning  the  accuracy,  error
rate and recall is shown in Fig. (8), exhibiting that the second
grid model produces 91.34, 92.11 and 96.53 for 100, 200 and
300 samples. The other two models, such as best-random and
First-grid, produce an average of 78% and 89%, which is less
when compared to the third model.

Fig. (7). Feature ranges of heart disease dataset.

Table 4. Performance measures of optimization models.

Optimization Models No. of Features No. of Trees Accuracy Error Rate Recall

Best-random 7
100 71.05 74.59 72.43
200 80.09 64.59 85.22
300 84.22 55.45 86.45

First-grid 7
100 90.03 70.19 80.98
200 87.59 62.43 90.26
300 89.44 53.32 92.17

Second-grid 7
100 91.34 65.45 92.12
200 92.11 60.44 95.25
300 96.53 52.17 97.01
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After fitting the random model with 5 fold cross-validation
by  setting  the  random  search,  the  parameters  random  grid,
number of iterations= 100; cv= 5, verbose =2, random state=
42, the model need to be evaluated. Generally, the number of
iterations  needs  to  be  reduced,  leading  to  the  over-fitting
problem. Hyperparameter tuning is done on n_estimators and
splitting  the  nodes  at  leaf  level  during  the  random search  to
alleviate  this  overfitting.  The  cross-validation  curve  can
determine  this.  The  mean  absolute  error  (MAE)  and  Root
means  squared  error(RMSE)  decrease  gradually  when  the
number  of  trees  is  increased.  The  average  error  rate  is
evaluated and shown in Fig.  (9).  The graph explains that  the
Error rate is  also reduced for the second grid compared with
the other two models.

The  proposed  work  contemplates  increasing  the  positive
rate  and  reducing  the  false-negative  rate  to  identify  patients
with  the  disease  for  further  treatment.  Among  300
observations, 291 instances are correctly classified, wherein the
recall rate of the proposed model increases concerning several
samples. The best Random model produces an average recall
rate  of  81%.  First-grid  produces  87%,  and  Second  Grid
produces 95% of the sensitivity rate (Fig. 10), proving that the
Random Forest  classifier produces enhanced results after the
Grid  search  optimization  method  deployed  for  feature
extraction.  The  time complexity  of  the  proposed  model  with
Random Forest classifier is O(n*log(n)*d*k), where k=number
of  Decision  Trees,  n=  number  of  training  examples  and  d=
number of dimensions of the data.

Fig. (8). Data samples vs accuracy.

Fig. (9). Data samples vs error rate.
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Fig. (10). Data samples vs recall measure.

CONCLUSION

In  this  research,  feature  selection  and  feature  extraction
methods  are  based  on  the  grid  search  optimization  method.
This  method  is  used  to  select  the  feature,  and  the  model  is
created and fit by tuning hyperparameters corresponding to the
features  and  samples.  The  proposed  model  is  designed  by
integrating  the  Random  Forest  (RF)  classifier  to  determine
relevant features. Grid Search Optimization (GSO) is applied
to the heart disease dataset to predict disease, and the model is
trained to increase the correct positive rate, thereby reducing
the false  negative.  It  increases  the  sensitivity  measure  of  the
Random Forest (RF) classifier.  This grid search is integrated
cross-validation to solve the over-fitting problem of the model.
The proposed model selects essential features, and the model is
trained on those features; thus, the dimensionality of samples is
reduced to some extent.

Meanwhile, it increases the prediction accuracy of the RF
model.  Generally,  random forest  produces better  accuracy in
tuning  the  hyperparameter.  The  n-estimators  and  minimum
split at the nodes are the two parameters tuned to enhance the
performance of the model, which in turn increases RF classifier
performance.  When  the  model  produces  low  accuracy,  the
model  is  created  with  another  set  of  features.  These
combinations take some computational time to create another
new model, which remains a challenge in the present work.
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