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Abstract:

Background:

1% of  people  around the  world  are  suffering from epilepsy.  It  is,  therefore  crucial  to  propose an efficient  automated seizure  prediction tool
implemented in a portable device that uses the electroencephalogram (EEG) signal to enhance epileptic patients’ life quality.

Methods:

In  this  study,  we  focused  on  time-domain  features  to  achieve  discriminative  information  at  a  low  CPU  cost  extracted  from  the  intracranial
electroencephalogram (iEEG) signals of six patients. The probabilistic framework based on XGBoost classifier requires the mean and maximum
probability of the non-seizure and the seizure occurrence period segments. Once all these parameters are set for each patient, the medical decision
maker can send alarm based on well-defined thresholds.

Results:

While finding a unique model for all patients is really challenging, and our modelling results demonstrated that the proposed algorithm can be an
efficient tool for reliable and clinically relevant seizure forecasting. Using iEEG signals, the proposed algorithm can forecast seizures, informing a
patient about 75 minutes before a seizure would occur, a period large enough for patients to take practical actions to minimize the potential impacts
of the seizure.

Conclusion:

We posit that the ability to distinguish interictal intracranial EEG from pre-ictal signals at some low computational cost may be the first step
towards an implanted portable semi-automatic seizure suppression system in the near future. It is believed that our seizure prediction technique can
conceivably be coupled with treatment techniques aimed at interrupting the process even prior to a seizure initiates to develop.

Keywords:  Epileptic  seizure,  Time domain  features,  Intracranial  EEG,  XGBoost  classifier,  Matthews’s  correlation  coefficient,  Probabilistic
framework, Low CPU cost.
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1. INTRODUCTION

According  to  the  UN’s  World  Health  Organization
(WHO),  epilepsy  affects  more  than  70  million  people
worldwide [1 -  3]  and epilepsy,  as  the fourth most  prevalent
neurological disorder, follows migraine, stroke, and Alzheimer
[2].  The  epileptic  patients  suffer  from  unexpected  recurrent
 seizures, which  are indirectly  linked to  their quality
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of lives, including loss of consciousness, mental illness, strange
sensations,  depression,  and  convulsions.  If  seizures  are  not
controlled, these patients have to deal with major limitations in
family,  social,  educational,  and  vocational  activities  [4].
Epilepsy can be treated with medication or surgery procedures,
but poor response to medication remains a serious limitation in
the  treatment  of  epileptic  seizures.  If  the  seizures  are  not
managed successfully, they can restrict the patient’s lifestyle.
In these scenarios, individuals may not independently work and
have some activities [4 - 6] since they are vulnerable to face
severe  issues  like  injuries  and  sudden  death,  limited
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independence,  restrictions  in  driving,  and  having  troubles
finding and keeping a job. Then forecasting the seizure enough
in advance will considerably enhance the patient’s life quality
[7, 8].

The increased use of Implantable Medical Devices (IMDs)
in all aspects of medicine makes them a suitable candidate in
both clinical trials and for ongoing epilepsy management [2, 9,
10].  Anti-seizure  devices,  like  Deep Brain  Stimulator  (DBS)
[11]  and  Vagus  Nerve  Stimulator  (VNS)  [12],  have  been
explored and implemented to decrease significantly the seizure
frequency  for  individuals  who  have  not  treated  with  Anti-
Epileptic  Drugs  (AED) [5,  13,  14].  These  implanted  devices
interrupt  and  stimulate  nerve  activity  by  carrying  electrical
impulses  to  a  specific  target  area.  On  the  other  hand,  these
devices  carry  chronic  therapy  instead  of  a  smart  targeted
therapy  as  well  as  suffer  from  the  physiological  feedback
which  delimits  their  efficacy  [14].  Over  the  past  80  years,
studying  ElectroEncephaloGraphy  (EEG),  either  invasive  or
non-invasive, is an entrenched methodology in evaluating the
electrical  activity  of  the  brain  and  in  unraveling  the
physiological  process  of  the  seizure  [7,  15].

With the advance of machine learning algorithms, scholars
are striving towards hiring these approaches to advance clinical
practice.  The  machine  learning  models  require  a  number  of
features  to  serve  the  algorithm  as  inputs  [16].  Features  are
variables that can represent the changes of a signal and for the
last decades, scholars have demonstrated that various types of
features have the predictability of impending seizures, which
can vary from interictal (no seizure) to pre-ictal phase (period
before  a  seizure)  [2,  17].  Therefore,  a  machine-learning
algorithm  with  a  closed-loop  electrical  stimulation  and
automated anti-epileptic medicines will be a suitable solution
to tackle the above problems. On demand medicine and therapy
medical  equipment  that  can  take  an  action  prior  to  a  seizure
will also help to minimize the devastating side effects induced
by regular usage of AEDs [18].

In  spite  of  extensive  studies  in  the  field  of  seizure
prediction,  the  severity  and  future  occurrence  of  epileptic
seizure  attacks  are  hard  to  be  anticipated  [9]  and  even  the

complexity,  non-linearity,  and  uncertainty  of  the  EEG  data
make  it  challenging  to  develop  a  highly  generic  seizure
prediction  framework  across  all  patients  [7].

A more systematic and logical approach to deal effectively
with this issue is to collect long-term continuous EEG data and
make  an  adaptive  machine  learning  model  (an  automated
labeling and training) with an adaptive seizure warning system
[19] which can be the subject of ongoing research in the future.
Fig. (1) demonstrates a semi-autonomous closed loop seizure
prevention  system.  AED  or  DBS  are  generally  employed  to
suppress  from  happening  and  reduce  the  severity  of  the
seizures, although they do not affect the normal functionality of
the brain. Nevertheless, they do not cure seizures and are just a
tool for long-term management of epilepsy [20 - 22].

To this end, in this research, we posit a new probabilistic
seizure  prediction  approach  with  some  time-domain  features
recommended to achieve discriminative information at a low
computational cost [23].

One of the limitations of published articles in this area is
about  using  limited  data  in  their  research.  The  researchers
endeavored to investigate just one minute of data [24, 25], they
employed a limited amount of data: 5 min preictal and 10 min
interictal. Additional remarkable limitation of existing works is
filtering  the  EEG  signal  with  a  pass-band  filter,  which
eliminates  the  high-frequency  sub-bands  that  are  very
important  in  seizure  prediction  [26,  27].  The  strategy  is  to
consider a large range of frequencies (from 0.5 to 120 Hz) and
ponder  the  whole  set  of  available  data  for  the  nominated
individuals.

Also, in some published works, the authors just employed
one feature to optimize the classifier and find the best window
size  [25  ,  28]  while  one  may  extract  redundant  information
from the electrodes during a given period of time, which may
be  useless  be  combined  with  other  discriminative  features.
Therefore,  this  work  can  be  seen  as  a  valuable  step  in
determining  the  optimal  window  size  for  efficient  seizure
prediction. In this investigation, it was found that a 2-second
window  is  an  effective  choice  because  [29]  by  choosing  a
window  size  longer  than  1s  and  smaller  than  4s,  a  non-
stationary  signal  like  EEG  can  be  assumed  as  stationary.

Fig. (1). An illustration of an autonomous medical device with a closed loop seizure suppression system.

�������	
����
	�����

����������
��	

�����
	���
� ����������
����
	������

�����������	
����

�������	
����
	�����

����

��������
������������
�������������
�����������
� ���
	�����
���������
�
	���
������������
��
��������
	�����
���!



Online Seizure Prediction System The Open Biomedical Engineering Journal, 2022, Volume 16   3

Fig. (2). Action potential in normal and during seizure activity.

Moreover,  design  and  implementation  of  a  reliable
forecasting  system  that  can  generate  an  early  warning  are
crucial for epileptic individuals to take appropriate medications
[30  -  32];  it  will  considerably  enhance  their  quality  of  life.
Additionally, since portable healthcare gadgets are so present
in  everyday  life,  targeting  the  tools  that  can  be  easily
implemented in such devices is  the primary objective of  this
paper.  The  aim  is  to  advance  the  performance  of  seizure
prediction  based  on  sensitivity,  specificity,  and  anticipation
time. The goal is to introduce a system with low computational
cost, for the sake of deploying a machine-learning algorithm in
an  implantable  medical  gadget  that  employs  simple  time
domain  features,  thus  allowing  rapid  calculation  in  the
prediction  of  the  seizure.

In this work, an efficient algorithm with a novel threshold
method  was  implemented  to  predict  the  seizure  with  an
invasive approach so that patients can be warned sufficiently in
advance with high sensitivity and very low zero false positive
rate. The anticipation time can be up to about 75 minutes and
varies  from  patient  to  patient,  which  is  enough  to  provide
adequate  clinical  treatment  time  prior  to  a  seizure  [33].
Interestingly, our novel prediction system does not rely just on
an early warning since the medical decision-making continues
to inform the patient for the upcoming seizure.

In  section 2  of  this  paper,  we will  provide a  preliminary
background for the seizure-forecasting framework, describing
the  nature  of  the  electrical  activity  in  the  brain  for  a  human
subject,  the  core  challenges  of  seizure  anticipation,  and  the
related works. In the next section, the dataset and the proposed
method, including the preprocessing, validation, classifiers, and
performance metrics will be introduced. In section 4, the novel
probabilistic  prediction  approach  as  well  as  the  results
obtained, will be discussed. Finally, we will conclude the work
in the last section, 5.

2. BACKGROUND CONCEPTS

The  nature  of  the  mechanism  of  the  seizure,  the  brain

signal of an individual with epilepsy, the major challenges in
forecasting seizure and the literature review will be discussed
in this part.

2.1. Mechanism of Seizure

Seizure  is  an  irregular  neural  activity  in  the  form  of  a
sudden uncontrolled electrical  discharge in  the  cortical  brain
region.  As  a  result,  a  collection  of  nerve  cells  starts  firing
excessively  and  synchronously.  People  with  frequent  and
unprovoked seizures, are usually diagnosed as epileptics [17,
34]. The action potentials in normal and during seizure activity
are depicted in Fig. (2a).

2.2. ECoG Signal

Generally, EEG records can be made non-invasively from
the  scalp  or  invasively  via  surgical  implantation  of  invasive
electrodes in the intracranial structures. The Intracranial EEG
(iEEG)  consisting  of  electrocorticography  (ECoG)  or
stereotactic EEG (sEEG) is the neuroelectrophysiologic signal
acquired  from  implanted  subdural  or  depth  electrodes,
respectively  [35,  36].

Scalp  EEG  recordings  are  limited  by  the  extracranial
artifacts  caused by the  scalp  muscle  and heart  activities,  eye
movement,  external  electromagnetic  field,  etc.  Therefore,
removing the artifacts from EEG signal stays a key challenge
for finding valuable information from brain activities [37, 38].

As an invasive method, iEEG recording presents a higher
signal-to-noise ratio (SNR) compared to scalp EEG [10, 13, 39,
40]. The invasive electrode is able to record signals from the
small-population  neurons,  which  is  non-recordable  with  the
scalp one. Once the intracranial EEG is employed to record the
brain activity, the brain wave is not weakened or changed by
the  skull/scalp  tissue,  which  performs  like  a  low-pass  filter.
Then, the seizures can be identified typically earlier employing
the intracranial electrodes compared to the scalp electrodes [41
- 44].
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2.3. SOP and SPH Definitions in Seizure Forecasting

Let us introduce three important time intervals in the field
of seizure forecasting:

Seizure occurrence period (SOP), the time interval in
which a seizure is expected to occur [10, 45, 46].
Preictal period (PP) or preictal zone, the period before
a  seizure,  which  is  clinically  obscure  but  implicitly
determined in the dataset [47].
Seizure prediction horizon (SPH), the interval between
the alarm and a leading seizure expected to occur. This
period is also vague though it should be in the preictal
period [10, 45, 46].

During  the  SPH  interval,  a  seizure-warning  tool  can
effectively inform the patient to behave carefully or treatment
plans can be employed [45]. Based on the clinical aspect, SPH
should be high enough to allow sufficient time for the patient
to  behave  cautiously  or  take  medicines.  By  contrast,  SOP
should be low enough to soothe the patient’s anxiety and stress
[45, 46].

2.4. The Challenges of Seizure Anticipation

During  the  past  quarter  century,  there  has  been  an
acceleration in the development of novel medical devices, from
which implantable medical devices (IMDs) have been gaining
increasing  interest  for  biomedical  applications  including
physical identification, health diagnosis, monitoring, recording,
and treatment of the physiological characteristics of the human
body  [48  -  50].  Despite  a  great  deal  of  research  in  seizure
prediction,  an  accurate  and  cost-effective  seizure  forecasting
system remains elusive [9]. The capability of machine learning
(ML)  algorithms  in  producing  very  accurate  results  has
influenced scholars to solve various challenges of real-world
problems by recruiting ML techniques, with several researchers
proposing  ML-based  algorithms  for  predicting  an  epileptic
seizure in the last few years [2]. Let us review some of the key
challenges in implementing of future IMDs in the prediction of
a seizure.

2.4.1. Nonstationary Nature of the Brain Activity

In order to diagnose a brain disorder, one may need first to
decode  the  brain  activity.  The  brain,  the  most  complex
structure present in the human body, contains more than 100
billion  neurons  [51  -  53]  with  hundreds  of  trillion  nerve
connections  that  form  the  neural  circuits  [51,  52].  These
circuits  can  be  involved  in  numerous  brain  activities  and
functions  via  engaging  multiple  neurons.  This  is  further
complicated  because  neurons  have  multiple  functions  and
neurons communicate with one another [21, 52, 54]. Then the
EEG signal measures the field potentials of many neurons and
theoretically, the activity of neuronal assemblies (considered as
a  non-linear  dynamical  system)  should  undeniably  involve
non-stationary and non-linear time-dependent functions [2, 55 -
57]. Furthermore, the uncertainty of the brain signals is highly
susceptible  to  various  forms  and  sources  of  noise  and  may
diligently  resemble  an  impending  seizure.  Consequently,
employing other biological measures like heart rate variability,
blood  pressure,  photoplethysmography  (PPG),  and
electrodermal  activity  (EDA)  have  been  shown  to  enhance
forecasting performance [8, 57].

2.4.2. Low- Power Implantable Medical Device (IMD)

There are various challenges in designing of IMDs such as
size,  power  consumption,  biocompatibility,  reliability,  and
lifetime  [48,  49,  58].  Power  consumption  perhaps  plays  a
dominant role among others and even can have effects on other
factors  [58].  As  the  size  of  the  IMDs  is  continuously
decreasing, the need for developing a reliable data processing
technique that is computationally efficient for implementation
on  hardware  is  tremendously  demanding  [9,  59,  60].  Also,
running complicated algorithms on the IMDs requires a large
physical  size,  which  requires  excessive  power  dissipation.
Moreover,  high-power  consumption  and  losses  generate
unavoidable heat and consequently the temperature around the
body  organs  will  rise,  which  grow  the  possibility  of  body
rejection  and  the  likelihood  of  developing  cancer  and  even
downgrading the longevity of implantable biomedical devices
[58].

On  the  other  hand,  some  of  the  recently  developed
algorithms  are  computationally  expensive  and  demand
additional  resources to achieve high reliability so an optimal
design  is  required  to  intelligently  compromise  the  power
dissipation  and  the  performance  metrics  [9].  In  (Table  1),  a
summary of the power requirement of several IMDs is reported
[9, 58, 61].

Table 1.  A summary of the power requirement of several
IMDs.

IMDs Neural
Implants[58]

Cardiac
Pacemaker[58]

Retinal
Implants

[48]

Insulin
pump
[58]

Cochlear
Implants

[48]
Power

consumption
10 ~ 200

mW 1μ ~ 10 μW 30 μ ~ 5
mW

10 m~
50 mW

5 m ~ 40
mW

2.4.3. Related Works

Research  on  seizure  prediction  via  an
electroencephalograph  (EEG)  recording  started  in  the  1960s
[62].  Since  then,  many  techniques  have  been  developed  but
there is still room to enhance the performance of the prediction
results.  A  review  of  the  studies  related  to  this  research  is
summarized in Tables 2 and 3. In these works, accuracy was,
most of the time, considered as the plain performance measure
while the window size has been also investigated.

The  authors  employed  accuracy  on  a  highly  imbalanced
dataset to find the best window size, i.e., 20 s, from a set of 1 to
60 s window lengths [10]. However, accuracy alone cannot be
considered the best metric to use and the results of this work
need  to  be  re-evaluated  by  applying  other  measures  besides
accuracy. In fact, in the above work, very few pre-ictal samples
were studied, while most of the samples belonged to the inter-
ictal  segments.  Then,  the  model  may  gradually  lose  its
capability of predicting the preictal patterns succeeding a long
inter-ictal pattern. Same conclusion can be made on the work
discussed in [63]. On the same framework, Parvez [25] claimed
that a 10 s window outperformed due to being more consistent
with  respect  to  the  AECR  (Average  Energy  Concentration
Ratio) values of preictal and interictal segments, although the
length  of  the  data  in  this  experiment  was  about  10  minutes.
Then the above statement needs to be reinvestigated as well for
a larger set of data.

Sigh  employed  the  posterior  probability  of  the  classifier
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and compared it  for various window sizes and then, the 90 s
window  was  chosen  due  to  having  the  highest  posterior
probability  while  the  performance  of  the  model  was  not
reported  and  whether  under-fitting  or  over-fitting  were
resolved  during  the  training  or  not  [64].  Some  authors
calculated  the  correlation  coefficient  during  a  certain  time
window  (from  0.5  to  300  seconds)  and  investigated  the
performance  of  the  classifier  just  by  employing  AUC  [28].
They  found  out  that  the  time  window  of  60  s  and  30  s
demonstrated  the  highest  AUC  for  seizure  prediction  in
humans  and  dogs,  respectively.  Again,  the  imbalanced  data
ratio was not reported, while AUC demonstrated various flaws

and  drawbacks  owing  to  the  fact  that  it  is  sensitive  to  class
imbalance [65 - 67].

With  regard  to  Table  3  [10,  68,  69],  the  classifiers  were
optimized  based,  again,  on  one  measure,  i.e.,  accuracy.
Furthermore, the performance of the classifier was not reported
[47] and it was based on other parameters rather than accuracy.
From the above, we can see that the major disadvantage of the
above studies in finding the optimum window length is using
plain accuracy, which can be an inadequate metric to evaluate
the performance of the classifier [70 - 73], particularly while
dealing  with  imbalanced  data,  as  in  most  of  the  existing
databases.

Table 2. Comparison of existing works related to optimum window length.

Reference,
year

Feature Used Window Size
Used in the
Paper

# of Subjects
and Seizures

Performance of the
Classifier

Imbalance Ratio (Data Length)

[10], 2018 Area, Normalized decay, Line
length, Mean energy, Peak
amplitude, Valley amplitude,
Normalized peak number, Peak
variation

1-100 s 7 subjects (5
dogs and 2
humans)

Accuracy 20:1 for dogs 2:1 for patients

[64], 2016 Power Spectral Entropy,
Fast  furrier  Transform,  Higuchi
Fractal  Dimension,  and  Hurst
Exponent

10-600 s Optimal window size can be argued to
be around 90 seconds

[28], 2015 Calculate the correlation coefficient
in a
Certain  time  window  between  all
possible pairs of EEG signals

0.5-300 s Kaggle dataset, 5
epileptic dogs
and 2 epileptic
patients

AUC, no other
information about the
classifier
performance

In humans, best classification is
showed by SVM classifier for a time
window Tw = 60 s (AUC = 0.9349);
for seizure prediction in dogs, highest
obtained AUC is 0.9432 for SVM
classifier and Tw = 30 s

[63], 2008 Empirical Mode Decomposition
(EMD) and AR model coefficients

12, 24, 35,
and 47 s

19 patients
the  Freiburg
database

Accuracy and
variance

From 5 to 20 min of preictal and same
length from interictal

[25], 2016 Average of the energy
concentration ratio

5, 10, 15
seconds

21 patients No information 10 second window outperformed due to
being more consistent with respect to
the AECR values

Table 3. Summary of published works in seizure prediction.

Reference,
Year

Avg.
Pediction

Time

Feature Used Performance Analyzing &
Classifier’s Performance

Imbalance
Ratio (Data

Length)

Database (Patients,
Human/Dog)

# Seizures and #
Hours Data

[68], 2019 0.25 minutes Nonlinear features
(which are

computationally
expensive)

sensitivity of 91% FP:36% -- 16 patients / Boston
Hospital non-invasive
EEG

The number of
seizures is not
mentioned
Less than 60 hours
data were
investigated

[10], 2018 Not reported time and frequency
domain

FP/h=0.03-0.6
TP/h=40-97%

For human:
TP/H:0.4-0.74
FP/H: 0.26-0.6

& Accuracy

From 2:1 to
20:1

677 hours (42
hours for
human)

111 seizures
(10 for humans)

MSEL-LAB
7 subjects (5 dogs and
2 humans)

MSEL and
IEEG.ORG

[47], 2017 No information
provided

time and frequency
domain

Prediction can achieve a
sensitivity of about 90–100%,
and the false-positive rate of
about 0–0.3 times per day.
No performance classification
is reported.

8:1 to 10:1
(607:77)

Kaggle competition
(6 Dogs)
canine epilepsy is an
excellent analog for
human epilepsy

20 seizures
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[69], 2017 33 time and frequency
domain

Sensitivity=92.2%, and
specificity
93.38%. or 0.06 1/h
& accuracy

Not mentioned CHB-MIT, scalp 84 seizures, 22
subjects

[74], 2017 25.66 26 univariate and 3
bivariate features

Sensitivity79%
Specificity 82%

Not mentioned 10 patients
26 electrode iEEG

154 seizures 86.20
days data

Table 4. Information of about the 6 retained patients: SP = simple partial, CP = complex partial, GTC = generalized tonic-
clonic; H = hippocampal origin, NC = neocortical origin; d = depth electrode, g = grid electrode, s = strip electrode.

Patient# Sex Age Seizure type H/NC Origin Electrodes Seizures analyzed
2 M 38 SP, CP, GTC H Temporal d 3
4 F 26 SP, CP, GTC H Temporal d, g, s 5
7 F 42 SP, CP, GTC H Temporal d 3
10 M 47 SP, CP, GTC H Temporal d 5
12 F 42 SP, CP, GTC H Temporal d, g, s 4
16 F 50 SP,CP, GTC H Temporal d, s 5

3. MATERIALS AND METHODS

3.1. Dataset

The  EEG  dataset  employed  in  this  research  is  from  the
University Hospital of Freiburg, Germany. The Freiburg EEG
Database  (FSPEEG)  is  one  of  the  most  cited  resources
employed in predicting and detecting experiments. The EEG-
database  consists  of  two  sets  of  files:  “preictal  (pre-seizure)
data,” i.e., epileptic seizures with up to 120 min preictal data,
and “interictal  data,” which contains about 24 hours seizure-
free  EEG-recordings  [75].  The  EEG-database  comprises  six
intracerebral (strip, grid, and depth electrodes) EEG recordings
with  a  sampling  rate  of  256  Hz.  We  retained  six  epilepsy
patients (temporal lobe epilepsy with the hippocampal origins
(134  hours)  from  this  set  of  data  (mean  age:  31;  age  range:
14-50;  both  gender)  and  employed  50  seizures  in  this  study
from these 6 patients (Table 4).

3.2. Methodology

3.2.1. Preprocessing and Feature Extraction

The initial  step in iEEG signal analysis is  preprocessing.
To reduce the impact of factors that cause baseline differences
among the different recordings within the dataset and eliminate
the  signal  DC  component,  iEEG  signals  were  standardized
using Z-scores (expressed in terms of standard deviations from
their means). The only potential artifact that could be addressed
was  the  harmonic  power  line  interference  at  50  Hz.  We
eliminated the 50 Hz interference indirectly by performing sub-
band  filtering.  So,  preceding  feature  extraction,  we  used  six
band-pass  FIR  (Finite  Impulse  Response)  filters  to  split  the
iEEG signals into various frequency bands: Delta (0.5-4 Hz),
Theta (4-8 Hz), Alpha (8-12 Hz), Beta (12-30 Hz), as well as
two Gamma bands namely, low-Gamma (30-47 Hz), and high-
Gamma (53-120 Hz) [76 -  78].  This led to an input space of
306 dimensions per window.

To handle the unbalanced data set, an hour EEG signal was
split into several non-overlapping window sizes (from 1 to 40
seconds) for the interictal stage, whereas the preictal stage was
divided  into  chunks  of  the  same  window  sizes  with  50%

overlapping. Although the time-frequency domain features are
most informative, the time-domain ones are more appropriate
to  attain  discriminative  information  at  a  low  computational
cost. In fact, high-quality features can be defined as those that
generate  maximum  class  separability,  robustness,  and  less
computational  complexity,  e.g.,  less  complex  preprocessing
that does not need the burdensome task of framing, filtering,
Fourier  transform,  and  so  forth  [23].  Thus,  these  features,
compared to other types, consume less processing power and
time. Consequently, from the three above-mentioned domains,
we  retained  the  features  that  belong  to  the  time  domain.
Several  univariate  linear  measures  were  extracted  at  each
epoch of window length, along with a bivariate linear measure,
as  reported  in  Table  5  [79  -  81].  From  this  table,  we  can
conclude  that  the  proposed  system can  work  in  real-time;  in
fact, the features can be computed and the classifier can deliver
an output in less than the window length. More details about
such time domain features can be found in another work [82].

Table 5. Features extracted during a 2s sliding window.

S.
NO.

Features Comments Time of the
Computation for
Each Channel (s)

1 Interquartile range One feature (36D)1 0.036152
2 Mean Absolute

Deviation
One feature (36D) 0.010459

3 Hjorth complexity One feature (36D) 0.003935
4 Coefficient of

Variation
One feature (36D) 0.010528

5 MAX of cross
correlation

15 values for 6
channels, but
considered as one
feature (90D)

0.087968
(between two

channels)

6 AR model 2 Two features (72 D) 0.026372
Notes: 1 36-dimensional (36D) feature vector. 2 (1 coefficient and an error term).

3.2.2. Data Partitioning

We used two approaches for validation namely, ‘Hold-out’
and ‘k-fold cross-validation’.

(Table 3) contd.....
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3.2.2.1. Hold-Out

In the hold-out validation, we considered 75% of the data
for  learning  (training)  and  the  remaining  25%  for  final
evaluation  (testing).

3.2.2.2. K-Fold Cross-Validation

To  apply  ‘k-fold  cross-validation’,  the  dataset  is  first
divided into ‘k’ folds. Each time, only one fold is employed for
testing  and  the  others  are  employed  for  training  the  model.
Then, the model is trained on the training subset and evaluated
by  the  validating  subset.  This  process  is  repeated  until  each
distinct fold is used as a validation subset. For this study, we
employed  10-fold  cross-validation  and  ran  each  cross-
validation experiment 10 times, i.e., 100 runs for each model.
Finally, the average of the obtained set of accuracy values was
considered [83 - 85].

In  a  nutshell,  we split  the  data  into  two groups,  train  set
(which consists of 75% of the data for tuning and validating the
model)  and  the  remaining  data  as  the  test  set  (never-seen-
before).  Both  training  and  testing  data  segments  have  been
numbered sequentially [86, 87]. When the classifier was fully
optimized with the learning and validating subsets, via 10-fold
cross-validation,  it  was  applied  to  the  test  set  for  final
evaluation  of  the  selected  model.

Undeniably,  our  aim  is  to  prevent  overfitting  and
underfitting and provide a generalized model that can make an
accurate  prediction  on  future  unseen  data.  Overall,  we
examined the predictive power of unknown data and provided
an  unbiased  estimate  for  the  predictive  performance  of  the
model [87 - 89].

3.2.3. Classification Approach

In  this  work,  we used  different  classification  approaches
such as Support Vector Machine (SVM), Multilayer Perceptron
(MLP), Random Forest (RF), and XGBoost (XGB).

Support Vector Machine (SVM) is one of the most popular
machine learning methods for classification. SVM utilizes the
loss  function,  hinge,  to  find  the  optimal  regularization
parameter, C. We employed linear SVM with L1 regularization
to struggle with overfitting so that the model can produce well
to predict new data. L1 regularization is the suitable choice for
built-in feature selection and when the output is sparse [90, 91].

MLP is a feed-forward Artificial Neural Network (ANN).
We retained the Relu function as nonlinear function employed
in  the  hidden  unit  and  tuned  alpha  as  the  regularization
parameter  [20,  90,  91].

Random  Forest  is  one  of  the  most  effective  methods  in
machine  learning,  consisting  of  creating  models  so-called  as
ensemble [88]. After training, the model tries to predict every
tree in the forest, then combines individual predictions based
on  a  weighted  vote.  This  means  that  each  tree  gives  a
probability  for  each  possible  target  class  label,  then  the
probability for each class is averaged across all the trees and
the class with the highest probability is the final predicted class
[92]. We tuned the maximum depth for the tree to regulate the
complexity and decrease overfitting [89].

XGBoost  stands for  eXtreme Gradient  Boosting,  the fast
implementation of gradient boosting. Boosting is a sequential
ensemble  learning  method  to  adapt  a  series  of  weak  base
learners to strong learners to increase the performance of the
model  [89,  93  -  97].  XGBoost  involves  a  much  faster
computation  than  the  regular  gradient  boosting  algorithms
since it employs parallel processing. To enhance the model, the
XGBoost classifier has two regularization terms (inbuilt L1 and
L2)  to  penalize  the  complexity  of  the  model  and  avoid
overfitting  [56,  93,  97].

We used the scikit-learn (machine learning) library through
the python package for this work [98]. The experiments were
executed on a desktop computer with Intel® Core™ i7 CPU @
3.3 GHz processor, 16 GB RAM, and Windows 7 Professional
64-bit operating system.

3.2.4. Evaluation and Performance Analysis

A classifier must generalize, i.e., it should work well when
submitted to data outside the train set. As we are handling the
issue of imbalance distribution of data, accuracy cannot be an
adequate metric to evaluate the performance of the model [70 -
73].  While  accuracy  remains  the  most  intuitive  performance
measure, it is simply a ratio of correctly predicted observations
over the total observations, so reliable only when a dataset is
balanced. However, this measure has been utilized exclusively
by some researchers in analyzing seizures [10, 99, 100].

Various  metrics  have  been  developed  to  evaluate  the
effectiveness  and  efficiency  of  related  models  in  handling
imbalanced  datasets  such  as  F1  score,  Cohen’s  kappa,  and
Matthews’s  correlation  coefficient  (MCC)  [68  -  70].  Among
the above popular metrics, MCC can be seen as a robust and
reliable evaluation metric in the binary classification tasks and,
in  addition,  it  was  claimed  that  measures  like  F1  score  and
Cohen’s kappa should be avoided owing to the over-optimism
results, particularly on imbalanced data [71, 72, 101, 102].

The  confusion  matrix  has  been  utilized  to  visualize  and
evaluate  the  performance  of  a  classifier  (Table  6).  After
computation,  we  utilized  accuracy  and  MCC to  compare  the
classification  performance  and  effectiveness  of  the  feature
selection methods. Hence, we categorized iEEG data into two
classes: “1” denoting the pre-ictal stage and the period prior a
seizure and “0” denoting seizure-free periods (interictal)  and
postictal (the period of time after a seizure).

Table  6.  The  confusion  matrix  for  a  binary  classification
task.

Actual Predicted
Positive Negative

Positive TP (True Positive) FN (False Negative)
Negative FP (False positive) TN (True Negative)

3.2.4.1. Accuracy (Acc):

Accuracy can be described as the ratio between the number
of  correct  predictions  and  the  total  number  of  correct
predictions.  Let  TP  be  actual  positives  that  are  correctly
predicted positives, TN be actual negatives that are correctly
predicted  negatives,  FP  actual  negatives  that  are  incorrectly
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predicted positives, and FN actual positives that are incorrectly
predicted negatives. Therefore, accuracy can be stated as:

(1)

3.2.4.2. Matthews’s Correlation Coefficient (MCC):

MCC ponders all four quadrants of the confusion matrix,
which  gives  a  better  evaluation  of  the  performance  of
classification  algorithms.  The  MCC  can  be  considered  as  a
discretization  of  Pearson’s  correlation  coefficient  for  two
random variables due to taking a possible value in the interval
between -1 and 1 [102 - 104]. A score of 1 is supposed to be a
complete  agreement,  −1  a  perfect  misclassification,  and  0
indicates that the prediction is no better than random guessing
(or the expected value is based on the flipping of a fair coin).

(2)

3.3. Optimum Window Size

As  mentioned  above,  an  iEEG  signal  was  chunked  into
various segments and during each sliding window, a specific
feature was extracted. This is repeated until the whole signal is
treated. The time window size varies from study to study from
1 to 20 seconds [10, 45 - 47, 105] and some work have been
done  about  finding  an  optimum  length  of  seizure  prediction
[25, 64, 106]. However, due to a lack of information related to
the performance of the classifier, this issue still needs further
investigation.

The length of the window is a crucial parameter that needs
to be chosen carefully. This size cannot be deemed too small
since the signal requires to be long enough to provide reliable
values for the features. Furthermore, the aim of this work is to
implement an algorithm on a low power device, which usually
means limited computing power. Then with very small window
size, less computational power is required to compute in each
window  compared  to  the  longer  one.  This  can  pose  a  threat
once enough computational power could not be available on a

small  implantable  medical  device  [100,  106].  On  the  other
hand,  the  window size  cannot  be  taken too  long because  the
characteristics extracted from the signal will  not have a very
smooth  transition  over  time.  In  fact,  because  the  targeted
activity might  occur at  the beginning or  in the middle of  the
window, the values extracted for the whole part of the sliding
long-window  may  not  exactly  represent  the  type  of  activity
[100].

The outputs of the classifiers for different sets of window
lengths,  depicted  in  Fig.  (3),  highlight  MCC  score  as  the
highest for the XGBoost classifier,  while MLP demonstrated
the least performance. From Table 7, one can notice that SVM
requires  the  lowest  time  and  memory  for  the  classification
process.  However,  XBG  being  the  most  time-consuming
approach due to implementing an ensemble boosting approach
that  converts  various  weak  learners  into  complex  model
sequentially, the final criterion to choose the best classifier was
the performance metric, MCC.

Among the available classifier candidates discussed above,
XGBoost  gave  the  best  performance  in  binary  classification
with  the  highest  MCC  score  while  the  grid  search  was
performed  to  optimize  the  Maximum depth  parameter.  XGB
has  been  broadly  utilized  in  numerous  fields  to  demonstrate
state-of-the-art  results  on  some  data  challenges  and  it  has
shown a strong potential  to  solve the resulting difficulties  in
data analysis. Besides, it is one of the most favorable classifiers
in machine learning regarding classifiers [95, 107, 108].

Table 7. Elapsed CPU-Time and memory consumption for
classification on test set for various classifiers.

Time and Memory for each classifier XGB RF MLP SVM
Elapsed CPU-Time (s) 2.11 0.75 0.79 0.27
Memory consumption (kB) 2.79 157.03 19.61 0.5

Finally, MCC score of XGB for various window sizes was
displayed in Fig. (3), showing that the best MCC was located
in the range of 2-10s window.

Fig. (3). MCC for all the classifiers in a graph.
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Note  that  our  work  does  not  suffer  from the  imbalanced
issue, which ratio is 1.6 (52 and 82 hours preictal and interictal,
respectively).  Various  performance  measures  and  classifiers
were  applied  to  make  sure  the  prediction  system  was
investigated  thoroughly.  For  a  window  length  of  1  s,  the
classifier performance was not improved, which can confirm
Islam’s works [29, 109] that state that by selecting a very short
window, e.g., less than one second, the seizure waveform may
not  be  recognized  properly  in  such  a  short  duration.  On  the
other hand, by considering a longer window length, e.g., more
than 3 seconds, the assumption of stationarity of an EEG signal
is not valid anymore. Hence, artifacts and seizures cannot be
distinguished from each other.

In  a  nutshell,  a  non-stationary  signal  like  EEG  can  be
assumed as a stationary signal in a short duration epoch like a
2-second  window.  Another  point  to  note  is  that,  in  order  to
optimize the device performance for a real time processing, one
needs  to  take  into  consideration  the  factors  of  computing
resources,  power  consumption  and  CPU  time  in  a  real  time
processing.  In  a  real  time  scenario,  a  device  will  be  always
sequentially extracting and calculating some features. Then by
assuming  a  longer  window  size,  the  device  will  need  to
calculate the features based on a longer portion of the signal.
The  longer  the  window  size,  the  higher  will  be  the  power
consumption and CPU time.

3.4. Probabilistic Framework

In  order  to  undertake  this  research,  various  phases  were
recruited:  data  collection,  data  preprocessing  and  feature
extraction,  classification  and  optimization,  evaluation  and
decision-making (which will be discussed later). The overview
of the proposed pipeline is illustrated in Fig. (4).

3.4.1. Platt Scaling

Platt  scaling  is  used  to  extract  the  probabilities  of  each
class,  i.e.,  seizure  vs.  non-seizure.  This  calibration  method
passes  the  output  of  a  classifier  from  a  single  model  to  a
probability  distribution  through  a  sigmoid,  as  a  result
estimation  of  posterior  probability  in  0-1  range  [110,  111].

In the next step, two important parameters were calculated,
namely, the mean and maximum probability of the non-seizure
(PNS)  and  the  seizure  occurrence  period  (PSOP)  segments  for
each participant along with the maximum probability of the PIN.
The  histogram of  Platt  scaling  for  the  whole  test  set  (PIN)  is
illustrated in Fig. (5). It shows that the model predicts most of
the time the lowest value and the chance of having a seizure is
not too high.  However,  in the case the system creates a very
high  probability  value  then,  possibly,  one  should  have  been
dealing with a high rate of false positive rate since a large set
of interictal section had been employed.

Fig. (4). Flowchart of the proposed framework.
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Fig. (5). The histogram of Platt scaling for the whole test set (PIN).

3.4.2. Thresholding

Success in learning the data using the optimized XGBoost
framework and extracting the probabilities as described earlier,
few adaptable thresholds were chosen to forecast  the seizure
efficiently based on the following procedure. In order to set the
thresholds (τN, τS) for 6 patients, the average and the maximum
probability of non-seizure (NS), the seizure occurrence period
(SOP),  and  the  maximum  probability  of  PIN  (PMAX)  were
computed.  Then  τN  and  τS  were  defined  as  follows:

(3)

(4)

These  empirical  constants  were  considered  as  thresholds
based on numerous experiments for the 6 patients and then, in
order  to  predict  an  impending  incident,  a  simple  model  was
then retained.

3.4.3. Decision Making

The pseudo-code of the supervised prediction framework
for an impending incident can be described as follow:

1: procedure PREDICTION (PIN, τN, τS,PMAX,POUT)

2: input: PIN, τNi, τSi,PMAXi (i=1, 2,…, 6)

3: output: POUT

4: for each time point of PIN

5: if PIN ≥ PMAXi then

6: go to line 11

7: else if PMAXi > PIN ≥ MEAN (τNi and τSi) then

8: return activate PA1(Prediction Alarm level 1 during T1)

9: P1 ← compute average of PIN over a 1-minute window

10: if P1 > MAX (τNi /τSi and (τNi + τSi)/2) then

11:  return  trigger  PA2 (Prediction Alarm level  2 during
T2)

12: else go to line 7

13: end if

14: else go to line 5

15: end if

16: end for

17: end procedure

As  shown  in  this  algorithm,  the  probabilistic  prediction
framework sequentially employs a 270 dimensional feature-set
(extracted 6 features over a 2-s window) to generate PIN as one
of the inputs to the probabilistic prediction framework (along
with τNi, τSi, and PMAX). Based on the PIN value and the first set
of thresholds (τNi,  τSi),  the system triggers the first  prediction
alarm (PA1) to warn the patient of an upcoming seizure with
about  60%  probability  (the  average  of  τN  and  τS)  within  the
period T1. If PIN is higher than PMAX, then a second alarm (PA2
as  T2)  will  instantly  be  activated.  Afterwards,  the  function
accumulates  the  input  for  one  minute  (the  future  window
length  can  be  called  the  forecast  horizon)  to  generate  the
second level of warning. This is done with the succeeding set
of thresholds (MAX of [τNi /τSi and (τNi + τSi)/2]), which entrust
80%  for  an  impending  seizure  (PA2)  at  a  certain  time  T.
Finally,  it  sends  an  urgent  alert  to  the  patient  and  caretaker.
Interestingly, in most published works, the anticipation time of
the  first  alarm  has  been  reported  while  in  this  work,  we
provided two sets of alarms to finally compare our work with
others based on the first triggered alarm.

If the second condition is not met, at least the primary flag
is raised and the system will continue to accumulate the next
minute  PIN  to  satisfy  the  PA2 condition.  This  procedure  will
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continue  as  PIN  ≥  (τNi  +τSi)/2  and  up  to  T2  times  (i.e.,  this
procedure  will  continue,  T2  will  be  updated,  and  the  system
will  remain  active  to  make  sure  the  seizure  will  happen  as
predicted  earlier).  The  whole  procedure  is  repeated  until  the
end of the iEEG signal (Table 8).

4. RESULTS AND DISCUSSION

4.1. Evaluation of the Probabilistic Approach

After  optimizing  a  classifier,  the  performance  of  the
overall  prediction  was  measured  using  common  metrics
utilized in the field to verify and estimate how successfully the
proposed  algorithm  performs.  Sensitivity  of  the  triggered
alarms  and  false  prediction  rate  (FPR)  were  employed  to
demonstrate the results of this research and compare them with
related  works.  Sensitivity  measures  the  ratio  of  correctly
predicted  seizures  divided  by  the  total  number  of  seizures,
while  the  false  prediction  rate  (FPR)  is  the  number  of  false
predictions over the total number of negatives [112].

(5)

Since  in  this  work  it  is  critical  not  to  miss  the  seizure
events  (preictal),  the  aim was  to  maximize  the  sensitivity  or
True Positive Rate (TPR) [113] and, at the same time, to have a
low  FPR.  Conventionally,  in  order  to  set  a  threshold,  some
researches  plotted  the  TPR vs.  FPR (the  ROC curve).  So,  in
order to maximize the performance of the prediction, there is a

trade-off  to  find  the  best  threshold  between avoiding  a  great
number  of  false  positives  (FP)  and  benefiting  from  true
positive (TP). In fact, it is challenging to simultaneously lower
the number of false alerts and increase the sensitivity [107, 113
-  115].  In  the  last  decade,  various  approaches  have  been
employed by scientists to attain an increase in the sensitivity
and a decrease of the low False-Positive rate while targeting a
high  anticipation  time  [45,  64,  115,  116].  If  the  outcome  is
above the threshold, a seizure alarm is triggered (in this work
the  values  of  the  alarm  were  inserted  in  the  first  stage).  As
explained earlier, the threshold values of our seizure prediction
framework are set so that they do not miss seizure episodes.

4.2. Results and Comparison with other Works

The results of this work for both sets of alarms are depicted
in Table 9 and 10. It is mentioned in Table 9 that there are two
values of T for patients #10 and #16 since we tested the model
on  two  seizures  for  those  patients.  Also,  the  output  of  the
probabilistic model based on Platt scaling (PIN  in Fig. (5) for
patients  #10  and  #12  were  illustrated  in  Figs.  (6  and  7),
respectively.  In  Fig.  (6),  PIN  for  both  preictal  and  interictal
segments was demonstrated. The seizure is happening between
5980  s  and  6133  s  (highlighted  in  red)  before  the  interictal
sections.  The  seizure  period  is  highlighted  in  red  for  patient
#12  in  Fig.  (7).  The  proposed  prediction  system  is  not  only
capable of forecasting the seizures (high sensitivity) but also
will not generate a high false alarm (Table 10).

Table 8. The implemented thresholds after numerous experiments for various patients.

Pa#2 Pa#4 Pa#7 Pa#10 Pa#12 Pa#16 The average with 95% confidence
interval

PNS PMEAN

PMAX

τN = PMEAN/PMAX

0.2068
0.53349
0.387717

0.002508
0.01957
0.12815

0.06607
0.3059
0.21597

0.02169
0.05004
0.43337

0.00249
0.0233
0.1069

0.0194
0.03959
0.49087

0.0532
0.16198

PSOP PMEAN

PMAX

τs = PMEAN/PMAX

0.34057
0.4499
0.75699

0.0644
0.10319
0.62446

0.16109
0.3059
0.5266

0.7457
0.9039
0.8251

0.76478
0.8478
0.902

0.623
0.863
0.7219

0.44997
0.57899

(τN+ τS)/2
τN / τS

MAX([τN+ τS]/2 & τN /τS)

0.572
0.51218
0.572

0.3763
0.2052
0.3763

0.3713
0.41013
0.41013

0.6292
0.52527
0.6292

0.5045
0.11849
0.5045

0.6065
0.6799
0.6799

0.51
0.41
0.53

Maximum probability of PIN, (PMAX) 0.6435 0.59142 0.7376 0.94712 0.9173 0.9577 0.7991± 0.09

Table 9. The results of two kinds of prediction time for 6 patients.

Time of prediction Pa#2 Pa#4 Pa#7 Pa#10 Pa#12 Pa#16 The average with 95% confidence interval
for PA1, T1 (min.) 59.6 70.2 68.4 88.7 & 80.3 85.1 67.1 & 84.9 75.5±7
for PA2, T2 (min.) 55.9 70.1 43 82.7 & 38.8 55.6 15.6 & 33.1 49.4±14

Table 10. The overall Forecasting results using for 6 patients.

Results Average for all the patients based on PA1, T1 Average for all the patients based on PA2, T2

Sensitivity 100% 100%
FPR 0.07% Almost 0%

Anticipation Time 75.5±7 49.4±14

𝐹𝑃𝑅 =
FP

𝐹𝑃+𝑇𝑁
= 1 − specificity           
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Fig. (6). PIN related to patient #10 included preictal and proceeding of the interictal portions. The red bar is the period of the seizure.

Fig. (7). PIN related to patient #12 included preictal and proceeding the interictal portions. The red bar is the period of the seizure.
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Fig. (8). Comparison of sensitivity, false positive rate and the prediction time (NR: Not Reported).

As demonstrated,  the  proposed approach performs better
with the highest  sensitivity and the lowest  false positive rate
(Fig. 8). As mentioned earlier, our comparison is based on the
first set of alarm, PA1, and the anticipation time is considered
T1.  It  is  worth  mentioning  that  these  results  should  be
relativized because of the limited number of patients available
in the used database.

CONCLUSION

In  this  work,  an  efficient  probabilistic  seizure  prediction
tool was proposed. Based on the XGBOOST algorithm, it uses
a  novel  threshold  method  to  predict  the  seizure  with  an
invasive approach. With a sensitivity and specificity of almost
100%, the anticipation time can be up to about 75 minutes, a
period long enough to provide adequate clinical treatment time
prior  to  a  seizure.  Furthermore,  the  proposed algorithm does
not rely just on an early warning since the medical decision-
making  continues  to  inform  the  patient  for  the  upcoming
seizure, making it an efficient tool for significantly improving
the daily life of patients.
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