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Abstract:

Background:

Over time, multichannel time series data were utilized for the purpose of modeling human activity. Instruments such as an accelerometer and
gyroscope which had sensors embedded in them, recorded sensor data which were then utilized to record 6-axes, single dimensional convolution
for the purpose of formulating a deep CNN. The resultant network achieved 94.79% activity recognition accuracy on raw sensor data, and 95.57%
accuracy when Fast Fourier Transform (FFT) knowledge was added to the sensor data.

Objective:

This study helps to achieve an orderly report of daily Human activities for the overall balanced lifestyle of a healthy human being.

Methods:

Interfacing is done using Arduino Uno, Raspberry-Pi 3, heart rate sensor and accelerometer ADXL345 to generate real time values of day-to-day
human activities such as walking, sleeping, climbing upstairs/downstairs and so on. Initially, the heart pulse of our four tested individuals is
recorded and tabulated to depict  and draw conclusions all  the way from “Low BP” to “Heavy Exercise”.  The convolution neural  network is
initially trained with an online human activity dataset and tested using our real time generated values which are sent to the MAC OS using a
Bluetooth interface.

Results:

We obtain graphical representations of the amount of each activity performed by the test set of individuals, and in turn conclusions which suggest
increase or decrease in the consistency of certain activities to the users, depicted through our developed iOS application, “Fitnesse”.

Conclusion:

The result of this works is used to improve the daily health routines and the overall lifestyle of distressed patients.

Keywords: Convolution neural network, Arduino, Raspberry Pi, IOS application, Human activity recognition, Smart phone.
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1. INTRODUCTION

After the use of hardware sensors, there evolved a popular
method  for  recognizing  human  activity,  through  Google
Activity Recognition API [1 - 3]. Google Activity API detects
user’s activities such as walking, riding a bicycle, staying still,
running, etc. by making use of the sensor data obtained from
the user’s smart phone device.

Wearable  sensors  with  embedded  accelerometers  then
caused  the  issue  of  discomfort  and  appeared  bulky  because
they are wired and battery operated, and also very expensive.

*  Address  correspondence  to  this  author  at  Department  of  Computer  Science,
Birla Institute of Technology – Science Pilani – Dubai Campus, UAE;
E-mail: raja.m@dubai.bits-pilani.ac.in

To  motion-track  everyday  tasks,  multiple  wearable  sensors
must  be  placed  on  different  parts  of  a  person’s  body  [4,5].
Another  study  depicted  that  Research  Studies  and  Statistical
Reports  conducted  by  Ericson  Consumer  Lab  in  this  regard
reported increased percentage in the number of smart phones
users from 36% in 2013 to70% by 2020 [6,7]. This led to the
increase in demand for smart phone-based activity recognition
systems and the overall study and research narrowed down the
two most efficient categorization methods like Random Forest
and One-Dimensional Convolution Neural Network. These two
methods were then compared against each other using numeric
comparison  methods  such  as  precision  and  recall,  calculated
from  their  respective  confusion  matrices  and  True/False
Positive/Negative rates, as depicted in Table 1. In comparison,
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One-Dimensional  Convolution  Neural  Network  provided  a
higher  accuracy  and  more  concise  results.  The  minimum,
maximum  and  the  threshold  and  data  ranges  and  overall
number  of  training  and  testing  sets  classified  using  this  1D-
CNN are tabulated in Table 2 and Table 3. Previous studies to
this,  applied  complicated  pattern  recognition  strategies
comprising of decision trees, decision tables, SVM, k-nearest
neighbours, and naïve Bayes [8,9].

Table 1. Random forest vs. 1D CNN.

Random Forest Predicted Class
Recall

Actual
Class

Activity Run Walk Still
Run 587 100 4 84.95%
Walk 65 561 65 81.19%
Still 0 62 629 91.03%

Precision 90.03% 77.59% 90.11% 85.72%
1D CNN Predicted Class

Recall

Actual
Class

Activity Run Walk Still
Run 605 84 2 87.55%
Walk 68 597 26 86.40%
Still 0 0 691 100%

Precision 89.90% 87.67% 96.11% 91.32%
Table 2. Train and test data.

Train and Test Data
Data Train Test Total

Feature 1 4953 2073 7026
Feature 2 4923 1473 6666

Table  3.  Mean  and  standard  deviation  of  minimum,
maximum,  data  ranges  and  threshold  ranges  of
transformed  activity  data.

Activities Minimum Maximum Data
Ranges

Threshold Ranges

Standing 0.03 ±0.01 0.10 ± 0.05 0.01 -0.16 0.00<Ysd ≤0.20
Walking 0.36±0.12 3.41± 0.51 0.24-3.92 0.20<Ysd≤4.00
Running 5.18± 1.02 9.03± 0.93 4.16-9.95 4.00<Ysd <10.00

The random forest method [10] was then discovered, and
was  found  to  be  an  ensemble  learning  methodology  used  in
classification. It uses small sized data to manufacture multiple
decision  trees  at  training  time.  It  improved  the  performance
execution  by  developing  these  procedures.  The  confusion
matrix shows that Random Forest has the highest accuracy rate.
Filtering  [11]  was  performed  using  Butterworth  filter  and
Median filter.  The Median filter  is  a  computerized nonlinear
sifting methodology, often used to expel noise. With a set end
goal  to  quantitatively  understand  the  acknowledgement
performance, standard measurements such as kappa statistics,
average  accuracy  rate,  F-Score,  sensitivity,  specificity,
positive/negative  predictive  value,  negative  detection
prevalence  and  balanced  accuracy  are  utilized  using  the
confusion  matrix  depicted  in  Table  4.

Alternative to ambient wearable sensors, some work was
done using smartphone sensors. Seven regular activities were
classified by using the accelerometer sensor embedded inside
Smartphones in several work areas [12,13]. Later, a system was
formed [14] by combining 20 sensors to identify activities such

as  standing,  lying,  walking,  etc.  As  K-  Nearest  Neighbour
method  is  non-parametric,  it  describes  a  model  structure,  by
not making any assumptions on the data distribution of given
data [15].

Table 4. Overall statistics of all classification evaluated by
confusion matrix in percentage.

Overall Statistics Decision
Tree

KNN Naïve
Bayes

Random
Forest

SVM

Sensitivity/Recall 96.29% 83.33% 92.59% 100% 92.59%
Specificity 99.26% 96.67% 98.52% 100% 98.51%

Positive
PV/Precision

96.67% 87.12% 93.63% 100% 93.07%

Negative PV 99.28% 97.50% 98.58% 100% 98.54%
Prevalence 16.67% 16.67% 16.67% 16.67% 16.67%

Detection Rate 16.05% 14.81% 15.43% 100% 15.43%
Detection
Prevalence

16.35% 16.67% 16.67% 100% 16.67%

Balanced Accuracy 97.77% 89.99% 95.55% 100% 95.55%

On  generation  of  Time  Series  data,  Machine  Learning
methodologies  [16,17]  are  used  for  generating  an  activity
recognition training model from the dataset tagged with values
for categorizing them into several classes. The percentage of
composition of our 7 classes in our dataset is depicted in Table
5.  Hence,  it  is  observed  that  the  performance  of  a  human
activity recognition system depends on various aspects such as
(i) The learning algorithm, (ii) The feature extraction method,
(iii)  The quality of the training data,  and (iv) The number of
activity  classes  [16].  For  Ensemble  Classifier  approaches,
various  implementations  concerning  deep  learning
architectures  with  multiple  modalities  have  been  made,
including Restricted Boltzmann Machine (RBM), Convolution
Neural Network and Deep Neural Network [18, 19].

Table 5.  The distribution portions of  our 7 classes  in our
datasets.

Classes

Imbalanced Data
(Case #1)

Balanced Data
(Case #2)

Number of
Samples

Percent of
Dataset

Number of
Samples

Percent of
Dataset

Downstairs 14894 28% 15000 14.2%
Fall 15000 29% 15000 14.2%

Jogging 3054 6% 15000 14.2%
Sitting 14675 28% 15000 14.2%

Standing 3636 7% 15000 14.2%
Upstairs 345 0.6% 15000 14.2%
Walking 29 0.05% 15000 14.2%

In  an  alternative  approach,  data  were  collected  from
smartphone  and  smartwatch  in  three-axis  signal  of  an
accelerometer  and  gyroscope  by  RubénSan-Segundoa  et  al.
Extracted  features  from  the  raw  data  were  applied  to  two
methods:  CNN  and  HMM.  There  was  a  steep  incline  in
accuracy from 78.6 to 88.1 for the accelerometer. And for the
smartphone, accuracy improved from 96.4 to 98.1. This makes
it evident that a feature normalization technique is fruitful for
smartphone data more than smartwatch data [20 - 24].

Accelerometer-based  activity  recognition  is  not  a  new
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topic in the history of mankind. Bao & Intille [25] developed
an activity recognition system to identify 20 activities using bi-
axial  accelerometers  placed  in  five  locations  on  the  user’s
body. Other studies have focused on how accelerometer based
devices can be used to identify a range of user activities. Other
work included building applications centered on accelerometer-
based  activity  recognition.  This  includes  monitoring  user
activity levels in order to promote health and fitness [26 - 28],
calculating a user’s level of intensity in activity and predicting
their  energy  consumption  [26],  and  detecting  a  fall  and  the
movements of user after the fall [27].

After  the  detailed  study  and  analysis  of  the  above
mentioned  methods,  a  combinatory  approach,  unlike
undertaken  by  the  previous  researchers,  was  used  in  this
research analysis. Taking note from the previous work studied
about,  methods  such  as  K-Nearest  Neighbour  [15],  Random
Forest [10] and Deep Convolutional Neural Network [2], either
one of these methods were the primary basis of the respective
research works, whereas there was no comparison done on why
the  set  method  was  chosen  by  the  authors.  In  our  novel
approach, we have used multiple methods to test the accuracy
of every method available to perform HAR before arriving at
the  method  which  was  proven  to  give  the  highest  accuracy.
This enabled a longer, more intricate process of getting highly
refined results than those in the literature review done above.
Moreover,  this  project  was  made  freely  customisable  to  the
need of the hour. On designing this HAR system, it was made
to be flexible to accustom to various health requirements that it
may be put to use. With respect to the current pandemic, this
project  can  be  used  to  monitor  home-quarantined  COVID
positive  patients,  for  doctors  to  keep  track  of  their  vitals.

2. MATERIALS AND METHODS

Human  Activity  Recognition  (HAR)  is  a  process,  or
algorithm which  is  used  to  detect  basic  and  daily  performed
human activities. We collected data from various sensors, and
record  them  in  an  organized  manner,  in  order  to  perform
further  investigation  and  report  results.  In  this  project,  the
Arduino Uno (shown in Fig. 1) is made to use, by integrating it
to  the  heart  pulse  sensor.  With  our  finger  on  the  sensor,

Arduino takes in that analog input and converts it into our heart
pulse in numeric digits  (in bpm).  The Raspberry pi  3 is  then
interfaced  with  the  Accelerometer  ADXL345  to  take  x,  y,  z
axial readings of human movements, to draw conclusions as to
which activity the person is performing and how much of each
activity  the  person  is  performing.  These  two sensors/devices
are  the  key  elements  of  this  design  project’s  hardware.  The
heart  pulse  sensor  gives  accurate  pulse  values  in  beats  per
minute (bpm), whereas, the accelerometer, detects axial x, y, z
movement and predicts resultant human activity. These sensors
are  then  interfaced  with  a  Bluetooth  Module  to  send  these
values  via  Bluetooth  to  the  MAC  OS  where  these  data  are
served as  a  testing data  for  the Convolution Neural  Network
(Figs. 2 and 3).

Proposed  convolutional  neural  network-based  system
works with taking in our sensor values through Bluetooth, to
classify  our  human  activities  into  various  classes.  The  deep
neural  network  calculates  the  mathematical  manipulation  to
turn  the  input  into  the  output,  for  both  linear  and  non-linear
relationships. Each mathematical manipulation is considered a
layer, and complex DNN can have many layers. The network
calculates the probability of each output at each layer. Later,
the test set results are reviewed and the network should select
which  probabilities  should  be  displayed  and  return  the
proposed label.  The classified and predicted activity data are
given  as  the  input  to  the  calculator  scheme  on  an  iOS
application  designed  using  XCode.  In  this  project,  a  basic
application “Fitnesse”, which predicts human activity based on
Bluetooth  received  real  time  sensor  data  is  developed.  The
convolutional  neural  network  and  multi-dimensional  deep
neural  network  are  constructed,  and  it  takes  the  input  from
accelerometer and performs many layers of training to build a
regenerative and linear regressive model. The online dataset is
used to train the inputs and build the model, and later proposed
system generated real-time dataset is used to test the model to
give an output. For the purpose of a study and visual analysis,
an online dataset called wireless sensor data mining (WISDM)
version 1.13 is used. The user ID’s are from 1 to 36. This is a
pre-processed and initialized dataset. This dataset contains text
as in Table 6.

Fig (1). Methodology Data path.

Accelerometer 
ADXL345 

Pulse Sensor 

Bluetooth Module 
HC - 05 

Convolution/Deep 
Neural Network 

iOS Application 
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DATAPATH 
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Fig (2). Block diagram of our processing approach.
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Fig (3). Example of PPG from each exercise used in CNN training.

Table 6. Dataset values.

User
ID

Activity Time Stamp X Axis Y Axis Z Axis

33 Jogging 49105962326000 -0.6946377 12.680544 0.5039528

This  dataset  is  used  for  the  classification  of  human
activities.  This  dataset  contains  1,098,207  examples
encapsulating  6  attributes  (Table  7).  The  dataset  class
distribution  is:

Table 7. Dataset class distribution.

Attributes No. of entries % of entries
Walking 424,400 38.6
Jogging 342,177 31.2
Upstairs 122,869 11.2

Downstairs 100,427 9.1
Sitting 59,939 5.5

Standing 48,395 4.4

The X, Y and Z axes are floating point values between -20
to 20 and are measured by the accelerometer as acceleration in

the  respective  directions  which  includes  gravitational
acceleration toward the centre of the Earth,  so that  when the
phone is at rest on a flat surface the vertical axis will register
+-10. A value of 0 means no acceleration. The sampling rate of
the  Heart  Pulse  Sensor  is  20Hz  i.e.  100  samples/sec.  The
maximum  sampling  rate  for  the  ADXL345  accelerometer  is
3200 Hz.  These  challenges  are  overcome by using a  method
called photoplethysmography (PPG) [29] and was studied with
the help of previous research work done by scholars [29]. PPG
is usually used for heart pulse detection in wrist sensors. It can
provide  improved  heart  rate  and  human  activity  recognition
(HAR) simultaneously at low sample rates, without an inertial
measurement unit. This results in a simple hardware design and
reduces power budgets.

2.1. Integration of Accelerometer and Heart Pulse Sensor

It is possible to measure heart rate at multiple sites on the
body such as ankle, forehead, ear, etc. using PPG. The wrist is
the most frequently used location for photoplethysmographic
heart rate monitoring when it comes to personalised health and
fitness monitoring using wearables. The accuracy of consumer-
grade wearables is mostly acceptable but prone to errors during
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rigorous  day-to-day  activities  [20].  The  complications  that
accompany correctly estimating the heart rate are seen mostly
while attempting to obtain a strong physiological reading from
the sensors. Often, the signals read from the PPG modules tend
to be largely corrupted with motion artefacts which is mainly
caused by the movement of the limbs. A clean PPG signal can
be retrieved even from a heavily corrupted signal by applying
filtering techniques which include adaptive methods based on a
measure of the artefact sourced from an accelerometer-based
measurement.

2.1.1. Dataset

A  wrist  PPG  exercise  dataset  collected  by  Jarchi  and
Casson  [21]  is  readily  and  publicly  available  online  on
PhysioNet and was used for the experiments performed in this
analysis [22]. Data from 8 healthy patients (5 male, 3 female)
were collected, during exercise, with a sampling frequency of
256 Hz. A wrist-worn PPG sensor was used to collect the data,
on board the Shimmer 3 GSR+ unit for an average recording
time of  5  minutes  and a  maximum time of  10 minutes.  Four
exercises  were  chosen  and  carried  out;  two  on  a  stationary
exercise  bike  and  two  on  a  treadmill.  The  exercises  were
further categorized as; walk on a treadmill, run on a treadmill,
high resistance exercise bike and low resistance exercise bike.
There wasn’t  any more filtering applied on the PPG data for
the  treadmill  exercises  other  than  what  the  Shimmer  unit
provided on board. High frequency noises were noted for the
exercise bike recordings which was later filtered in MATLAB
using  a  second  order  IIR  Butterworth  filter  pertaining  to  a
15Hz cutoff frequency.

The HAR experiments were classified using the Inception-
V3  architecture  and  was  later  pertained  on  ImageNet.  The
technique of Transfer Learning [23] was used to again train the
deep  model.  The  weights  of  the  penultimate  layer  were
changed  whereas  the  other  layers  did  not  have  any  change.
This enabled smaller amounts of data to be able to train models
with  large  learning  capacities  which  usually  consume  more
time and data to train from scratch. It is possible to fine tune
the  retraining  procedure  by  optimizing  the  hyperparamters.
Default  settings  were  enabled  in  this  study  but  there  was  a
change in the training steps from 10,000 to 4,000. This resulted
in the convergence of cross entropy/loss function value, which
in  turn  helped  to  minimise  overfitting.  Fig.  (2)  depicts  the
block  diagram  of  the  processing  pipeline  mentioned  in  this
study. A python library named Matplotlib was used to plot the
PPG  signal  as  images,  saved  as  299x299  JPEGs.  All  axis
labels,  legends,  titles  and  grid  ticks  were  removed.  The
library“wfdb” in python, was made use to extract and load the
data from PhysioNet.  A total of 6,653 images were stored in
four  sub-directories  of  the  possible  predicted  classes  (High,
Low, Run and Walk) to train the HAR classifier. The ratio of
train:validation:test was 8:1:1.

2.1.2. Downsampling and Segmentation

Downsampling was performed on the PPG Signal before
segmenting  to  different  sampling  frequencies.  Initially,  the
classifier was trained in Python using the full 256Hz sampling
frequency, and then retrained on downsampled frequencies of

30Hz,  15Hz,  10Hz,  5Hz  and  1Hz  respectively.  After
downsampling the signals, it was segmented into small chunks.
Data  were  captured  for  8  seconds  (with  increments  every  1
second) using a windowing function.

On completion of  80 epochs,  a  cross  entropy loss  or  log
loss,  which  measures  the  performance  of  a  classification
model, is found to be an acceptable value of 0.09, as depicted
in Fig. (4) and tabulated in Table 8.The train - test split ratio of
the  balanced  dataset  is  80/20.  The  following  network  after
running 10 epochs gives us a model with training accuracy of
90% and validation accuracy of 89%. The results shown depict
that  train  and  validation  both  achieve  near  to  100%  model
accuracy  and  less  than  20%  loss.  Later,  the  simulation  has
extended for the case of training set with50 epochs to see the
comparison in the improvement of model accuracy and model
loss.

Fig. (4). HAR Cross Entropy for 10Hz Sampling Frequency.

Table 8. Network Model after running for 10 epochs.

Epoch Train
Loss

Train
Accuracy

Validation
Loss

Validation
Accuracy

Epoch 1/10 1.6382 0.2965 1.2852 0.7290
Epoch 2/10 1.1923 0.5953 0.8489 0.7103
Epoch 3/10 0.9158 0.6565 0.5701 0.8318
Epoch 4/10 0.6952 0.7059 0.4672 0.8224
Epoch 5/10 0.5082 0.8259 0.3216 0.8972
Epoch 6/10 0.4439 0.8353 0.3090 0.8879
Epoch 7/10 0.3538 0.8659 0.2553 0.8972
Epoch 8/10 0.2992 0.8847 0.2375 0.9865
Epoch 9/10 0.2669 0.9129 0.2432 0.8879
Epoch 10/10 0.2567 0.9082 0.2201 0.8972

The network after running 50 epochs (above shown sample
in Fig. (5) is 10 epochs) raises a model with training accuracy
of 84% and validation accuracy of  71%.The train – test  data
split as user ID’s from 1-28 were taken for training and 29-36
for  testing  to  ensure  training  data  would  not  bleed  onto  the
testing  data.  As  the  table  depiction  of  50  rows  of  values  is
bulky and difficult to visualize, in order to depict these numeric
values, a graph was plotted for Training/ Loss vs Epoch (1-50)
with  differentiated  lines  to  show  each  of  Loss,  Accuracy,
Validation loss and Validation Accuracy. Hence, it is observed
that  Train  and  Val  attain  above  80%  accuracy  and  below
40%-60%  loss.
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Fig. (5). Model loss and accuracy after 20 epochs.

A  clearer  cut  view  of  the  Model  Loss  and  Accuracy  is
depicted in Fig. (6), with the accuracy of training data touching
exactly 80.001%. A confusion (error) matrix was also produced
as shown in Fig. (7) which visualized the performance of the

network  after  training.  This  matrix  shows  that  the  network
faced difficulty while testing between walking downstairs and
walking upstairs. The model was precise in predicting all the
other activities particularly in order of jogging, sitting, standing
followed by walking.

Fig. (6). Model loss and accuracy after 50 epochs
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Fig. (7). Confusion Matrix after Training.

Later, the coreML and Keras toolsets were used to deploy
the neural network alongside the XCode 11 model, which was
then further projected onto the device (Table 9).

The exercise specific HRE is for the HeartPy method, and
it  is  similar  across  all  sampling  rates  except  from the  10  Hz
sampling frequency on the “walk” exercise. Heart Rate Error
(HRE) is defined here as the absolute difference between the

estimated heart rate for a given PPG sample and the heart rate
ground  truth  calculated  from the  concurrent  ECG sample.  A
46% - 55% error was noted from other sampling frequencies
except the 10 Hz one which was proven to achieve a reduced
frequency of 39%. It can be clearly seen in Table 10 that the
10Hz sampling frequency has performed the best for estimating
heart rate from the MA corrupted signal.

Table 9. Model Accuracy Improvement after 50 epochs.

Epoch Loss Accuracy Val_loss Val_accuracy
Epoch 1/50 1.0943 0.6401 0.7023 0.8146
Epoch 2/50 0.5863 0.7902 0.6559 0.8055
Epoch 3/50 0.5166 0.8096 0.6393 0.8251
Epoch 4/50 0.4949 0.8183 0.6381 0.8218
Epoch 5/50 0.4664 0.8296 0.6382 0.8184
Epoch 6/50 0.4485 0.8366 0.6573 0.8268
Epoch 7/50 0.4470 0.8346 0.6675 0.8220

Table 10. Heart Rate Error using HeartPy.

Sampling Frequency
Exercise

High Low Active Rest
256 Hz 11.78 8.14 19.44 54.94
30Hz 11.80 10.61 20.71 53.69
15Hz 12.10 11.15 19.94 46.83
10Hz 10.46 14.05 17.82 39.28
5Hz 10.94 10.05 19.27 48.85

Downstairs  65  65  6  1  261  626 

Jogging  2  1902  0  0  7  79 

Sitting  0  0  451  0  1  0 

Standing  0  0  117  248  5  0 

Upstairs  32  38  0  60  185  410 

Walking  27  495  0  0  35  1840 

Downstairs  Jogging  Sitting  Standing  Upstairs  Walking 
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3. BASIC EXECUTION: EXPERIMENTAL RESULTS

Various  Experimental  Results  were  obtained  for  the
training  and  testing  of  our  CNN  and  DNN,  to  classify  our
different  classes  of  human  daily  activities.  Values  of  the
heartbeat of four person were recorded (in BPM) by our Pulse
Sensor and tabulated as shown in Table 9. The categories are:

Above 90 – Heavy Exercise
Between 80 and 90 – Light Exercise
Between 70 and 80 – Normal
Below 70 – Low BP

The average overall heartbeat (in bpm) is written in the last
column of Table 11, followed by the category that the last bpm
falls  into,  as  mentioned  above.  This  helps  to  categorize  the
people  into  4  different  activity  levels  and  hence  allocate  4
different  schemes  of  improvement/reduction  of  their  daily

activities.

3.1. Graphs

3.1.1. Pulse Sensor

The human heart pulse observed in Fig. (8) seems to be of
a  constant  rate  of  heart  beats  ranging  from  75  to  100  bpm
(beats per minute) on an average, which is the normal range for
an average human being.

3.1.2. Mobile Activities

We observe that the Figures depicting strenuous or calorie-
consuming activities such as Jogging, Walking and Climbing
Upstairs show the most deflected movement of the body along
X, Y and Z axes. We see a more straight-lined or smooth graph
for  casual  activities  such  as  walking  downstairs,  or  standing
still.

Table 11. Categories of various levels of activity in 4 test persons.

Person 1 Person 2 Person 3 Person 4
68 65 88 72
67 68 89 111
67 74 89 116
66 78 89 105
67 86 89 103
68 89 88 84
68 87 89 77
68 90 88 75
70 87 87 26
68 68 87 27

70.27 89.5 91.38 81.33
Normal Light Exercise Heavy Exercise Light Exercise

Fig. (8). Heart Pulse Sensor Graph.
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Fig. (9). Walking X,Y,Z Movements from Dataset.

Fig. (10). Walking X,Y,Z Movements from Accelerometer.

Fig. (11). Jogging X, Y, Z Movements from Dataset.

Fig. (12). Jogging X, Y, Z Movements from Accelerometer.

Fig. (13). Standing X, Y, Z Movements from Accelerometer.

Fig. (14). Sitting X, Y, Z Movements from Accelerometer.
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Fig. (15). Downstairs X, Y, Z Movements from Dataset.

Fig. (16). Downstairs X, Y, Z Movements from Accelerometer.

Fig. (17). Upstairs X, Y, Z Movements from Dataset.

Fig. (18). Upstairs X, Y, Z Movements from Accelerometer.

4. DISCUSSION

Figs. (9-18) depict the different activities recorded in real
time  from  our  Accelerometer  and  Heart  Pulse  sensor  data
values. On comparing the number of samples in our dataset per
user,  It  is  observed  in  Fig.  (19)  that  User  1  has  the  most
observed samples in his/her training set (The users are arranged
in  the  decreasing  order  of  number  of  recorded  samples
available).  Fig.  (20)  depicts  that  most  users  seem  to  have
provided  the  most  number  of  samples  or  most  frequently
perform  the  activity  of  “Walking”,  followed  by  “Jogging”,
“Walking Upstairs”, “Downstairs” and so on.

Fig. (19). Training Examples provided by user.

Fig. (20). Training Examples by Activity Type.

CONCLUSION

This  project  developed  a  combination  and  blend  of
software and hardware devices, to give our various outputs of
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HAR classes, such as jogging, walking, sitting, standing, etc.
We  used  Heart  Pulse  and  Accelerometer  sensors,  to  get  and
plot  our  real  time  values.  These  real  time  generated  values
were  simultaneously  sent  to  our  MAC PC using  a  Bluetooth
module interface.

The  output  of  our  Neural  Network  was  sent  to  an  iOS
XCode  created  application,  where  the  user  could
simultaneously  interact  and  get  the  real  time  values
corresponding  to  the  activity  that  they  were  performing.
Conclusions were drawn on Human Activity levels, based on
the received classes of activity they performed, for how many
time  frames  of  a  day.  This  project  can  be  used  in  fields  of
medicine, day-care, surveillance, etc.

This project could be of use in multiple fields, as we have
concluded above. One major application could be in the field
of Mental Health. Our application could be slightly modified in
order to give doctors the details of the activities performed by
their respective patients undergoing mental illness treatments
under their supervision. A doctor could either choose to sit in
his  cabin  or  his  home  office,  and  be  able  to  monitor  every
activity  the  patient  does,  and  he  can  generate  his/her  health
report. Another recent scope of this project could be to monitor
Home-stabilized Coronavirus positive patients, to monitor their
daily  activities  and  suggest  deadlines  of  everyday  minimum
body  activity  limits,  to  improve  immunity  and  metabolism
rates,  and keep them in good health  to  avoid worsening side
effects  associated  with  the  virus  and  an  overall  quicker
recovery.
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