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Abstract:

Background:

The upsurge of COVID-19 has received significant international contemplation considering its life-threatening ramifications. To ensure that the
susceptible patients can be quarantined to control the spread of the disease during the incubation period of the coronavirus, it becomes imperative
to automatically  and non-invasively mass screen patients.  The diagnosis  using RT-PCR is  arduous and time-consuming.  Currently,  the non-
invasive mass screening of susceptible cases is being performed by utilizing the thermal screening technique. However, with the consumption of
paracetamol, the symptoms of fever can be suppressed.

Methods:

A novel multi-modal approach has been proposed. Throat inflammation-based mass screening and early prediction followed by Chest X-Ray based
diagnosis have been proposed. Depth-wise separable convolutions have been utilized by fine-tuning Xception Net and Mobile Net architectures.
NADAM optimizer has been leveraged to promote faster convergence.

Results:

The proposed method achieved 91% accuracy on the throat inflammation identification task and 96% accuracy on chest radiography conducted on
the dataset.

Conclusion:

Evaluation of  the  proposed method indicates  promising results  and henceforth  validates  its  clinical  reliability.  The future  direction could be
working on a larger dataset in close collaboration with the medical fraternity.

Keywords: Chest X-Rays, COVID-19, Depth-wise separable convolutions, Mobile net, Multi-modal, NADAM, Throat inflammation, Xception
net.
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1. INTRODUCTION
The  novel  coronavirus  disease  caused  by  Severe  Acute

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is highly
contagious  with  common  symptoms  including  fever,  dry
cough, headache, sore throat, and chest pain. It is essential to
control the spread of this contagious disease.

Thermal screening fails as it measures the body's surface
temperature and does not  directly  indicate  fever. Fever as  a
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Engineering Sardar Vallabhbhai National Institute of Technology, Surat, India;
E-mail: ojasramwala@gmail.com

prodrome varies from person to person and alters several times
a  day.  Also,  with  the  consumption  of  paracetamol,  the
symptoms of fever can be suppressed. Thus, it becomes crucial
to identify another characteristic for mass screening.

Chest Radiography based diagnosis is also conducted and
analyzed by radiologists to look for visual indicators associated
with  SARS-CoV-2  viral  infection.  The  Reverse  Transcript
Polymerase Chain Reaction (RT-PCR) has been accepted as a
gold  standard  for  the  COVID  diagnosis.  However,  it  is  a
cumbersome process.  Figs.  (1  and 2)  showcase the Chest  X-
Rays of normal and COVID-19 infected patients.
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Coronavirus enters through the upper respiratory tract and
multiplies in the mucosa of the nasopharynx and oropharynx,
leading to irritation and slight inflammation [1, 2] in the throat.
Redness  in  the  pharynx  and  tonsil  as  compared  to  healthy
patients can be understood from Figs. (3 and 4).

Early identification of the susceptible patients is possible
by  detecting  the  redness  at  an  early  stage.  Hence,  throat
inflammation  has  been  identified  as  a  symptom  for  early
diagnosis of COVID-19. Furthermore, swelling in pharyngitis
cannot be circumvented by the consumption of any drug. The
proposed method makes mass screening easy and reduces the
burden on the medical and the paramedical fraternity.

Detection  via  the  proposed  method  can  be  done  without
direct  exposure  to  the  infectious  person,  which  is  a  massive
advantage compared to various other screening methods.

Fig. (4). Throat images of healthy patients.

2. RELATED WORK

COVID-19  testing  methods  include  invasive  laboratory-
based methods like RT-PCR test and Rapid antigen test, with
thermal  screening  being  the  only  available  method  for  mass
screening. The COVID-19 RT-PCR test is a real-time reverse
transcription-polymerase chain reaction (RT-PCR) test for the
detection  of  nucleic  acid  from  SARS-CoV-2  in  upper  and
lower  respiratory  specimens  (such  as  nasopharyngeal  or
oropharyngeal swabs, sputum, lower respiratory tract aspirates,
bronchoalveolar  lavage,  and  nasopharyngeal  wash/aspirate)
collected  from  individuals  suspected  of  COVID-19  by  their
healthcare  provider  (HCP),  as  well  as  upper  respiratory
specimens  (such  as  nasopharyngeal  or  oropharyngeal  swabs,
nasal  swabs,  or  mid-turbinate  swabs)  collected  from  any
individual,  including  for  testing  of  individuals  without
symptoms  or  other  reasons  to  suspect  COVID-19  infection.

Laboratory-based testing methods are  invasive and time-
consuming. For mass screening, currently, only thermal-based
mass  screening  techniques  are  applied,  but  thermal  mass
screening  fails  as  high  body  temperature  is  not  constant  for
infected patients,  as  well  as  thermal  screening is  affected by
various  human,  environmental,  and  equipment  parameters.
Moreover,  feverish  symptoms  can  be  concealed  by  the
consumption  of  paracetamols.  Hence,  methods  that  can  be
applied  and  thermal  mass  screening  that  could  assist  in  the
forestall of COVID-19 are required. Chest radiography based
COVID-19 detection has also been proposed [3]. Since a virus
causes  infection  in  the  lungs,  analysis  of  chest  radiography
images  is  manually  performed  by  radiologists  to  screen
infected  patients.

Throat  inflammation  is  also  identified  as  a  potential
symptom  of  the  coronavirus  family.  To  identify  throat
inflammation by the fuzzy logic system [4], a 3-Channel image
is  an  input  to  the  system.  After  the  preprocessing,  the  red
channel boundary was identified for the color-based inference
system. This method is said to give 80% accuracy for detecting
throat inflammation. Another method ascertained was to use a
green channel  image for infected region extraction,  followed
by mean value calculation and using a Sobel edge detector [5].
In this, the RGB image and infected region area are extracted
and provided to extract red color intensity and infected area in
pixels. For detection of COVID-19 through chest-based X-Ray
radiography,  the  use  of  Artificial  Intelligence  and  Deep
Learning  techniques  [6  -  8]  tend  to  assist  radiologists  in  the

Fig. (1). Chest X-Ray of normal patients.

Fig. (2). Chest X-ray of COVID-19 infected patients.

Fig. (3). Throat images of infected patients.

  
(a)                                            (b)                        

                                                                                                                 
(a)                                            (b)                               

 

                                                   (a)                                       (b) 



228   The Open Biomedical Engineering Journal, 2021, Volume 15 Ramwala et al.

Diagnosis of the disease.

Deep  Learning  network  termed  DarkCovidNet  [9]  based
on X-ray images for automated COVID-19 diagnosis was also
developed.  This  DarkCovidNet  is  based  upon  YOLO-You
Only Look Once Architecture, mainly used for real-time object
detection.  Their  proposed  model  is  developed  to  provide
accurate diagnostics for binary classification (COVID vs. No-
Findings)  and  multi-class  classification  (COVID  vs.  No-
Findings  vs.  Pneumonia).  Investigators  have  recognized
significant  discoveries  in  imaging  studies  of  COVID-19.

Deep convolutional neural networks (DCNNs) are one of
the  robust  deep  learning  architectures  and  have  been  widely
applied  in  many  practical  applications  such  as  pattern
recognition  and  image.  DCNNs  handle  the  use  cases  by
training the neural network weights on huge available datasets
followed by fine-tuning the network weights of a pre-trained
DCNN based on small datasets. COVIDX-Net [10] model was
developed considering X-ray images with seven different CNN
models.  The  class  activation  mapping  (CAM)  and  gradient-
weighted class activation mapping (Grad-CAM) methods have
been  proposed  by  X  to  provide  more  insight  for  model
decisions. Heatmap localization was produced to highlight the
important  regions  that  are  closely  associated  with  predicted
results.

A  dual-sampling  attention  [11]  network  to  classify  the
COVID-19 and CAP infection was proposed. To focus on the
lungs,  the  method  leverages  a  lung  mask  to  suppress  image
context of non-lung regions in chest CT followed by refining of
the  attention  of  the  deep  learning  model  through  an  online
mechanism to better focus on the infection regions in the lungs.
Chest CT has also been utilized for COVID-19 classification
and  lesion  localization  [12],  such  that  the  lung  region  was
segmented using a pre-trained UNet, and for the prediction of
the  probability  of  the  disease,  it  is  fed  to  a  3D  deep  neural
network.  COVID-Net  [13]  was  proposed,  the  first  neural
network  architecture  designed  for  COVID-19  detection  to
introduce  a  lightweight  projection-expansion-projection-
extension  (PEPX)  design,  which  enables  enhanced
representational  capacity  while  significantly  reducing
computational  complexity.

This  study  proposes  a  multi-modal  method  focused  on
infected patient screening using throat image analysis followed
by  inference  using  chest  X-ray.  If  the  patient  is  noted  as
infectious  under  throat-based  screening,  then  a  Chest  X-ray-
based diagnosis can be performed to validate the results. The
proposed method utilized Depth-Wise separable convolutions
for  fine-tuned  Mobile  Net  based  architecture  for  throat
infection analysis and fine-tuned Xception Net based model for
chest radiography analysis.

3. METHODOLOGY

Efficient  COVID-19  diagnosis  necessitates  a  dedicated
organization  of  techniques  that  can  be  deployed  for  mass
screening  and  early  prediction.  This  section  is  intended  to
formulate  the  deep  learning  architectures  implemented  for
throat-inflammation-based  mass-screening  and  chest  x-ray
based  early  prediction.

Concepts behind depth-wise separable convolutions have
been showcased with mathematical and schematic illustrations.
Fine-tuning of MobileNet for mass-screening and Xception Net
for  early  prediction  are  elucidated  in  the  subsequent  sub-
sections. Explanation of the implemented loss function and the
detailed  mathematical  reasons  behind  the  choice  of  the
optimizer  have  also  been  presented.

3.1. Depth-Wise Separable Convolution

Depth-Wise Separable Convolutions [14, 15] are a form of
factorized convolutions. A standard convolution is factorized
into a depth-wise convolution and 1 X 1 convolution known as
point-wise convolution. In a standard convolution new set of
outputs  are  generated  by  filtering  and  input-combining  in  a
single step. The depth-wise separable convolution divides this
process into two layers: filtering and combining. A single filter
is  applied  to  each  input  channel  in  depth-wise  convolutions.
The outputs of the depth-wise convolutions are then combined
by  the  1  X  1  point-wise  convolutions.  This  technique
significantly  reduces  computational  complexity  and  model
size.  Consider  the  following  notations:

F – Input Feature Map

G – Output Feature Map

Ĝ – Filtered Output Feature Map

 – Depth-wise convolutional kernel

DF – Spatial Width and Height of the square input feature
map

M – Number of input channels (input depth)

DG – Spatial Width and Height of a square output feature
map

N – Number of output channel (output depth)

DK – Spatial width and height of the square kernel

A standard convolution layer takes input as a feature map
F of dimension DF × DF × M, and generates output as a feature
map G of dimension DF × DF × N.A. A convolution kernel K of
dimension  DK  ×  DK  ×  M  ×  N.  Considering  stride  one  and
padding, the output feature map is computed as shown by Eq 1.

(1)

Thus, the computational cost for standard convolution can
be computed, as shown by Eq 2.

(2)

From  equation  2,  it  can  be  observed  that  the  number  of
input channels, kernel size, number of output channels, and the
size  of  the  feature  map  controls  the  computational  cost
multiplicatively.  The  proposed  architecture  addresses  these
terms by implementing depth-wise separable convolutions to
drop the interaction between the output channel's number and
the kernel's size. For substantial computational cost reduction,
the filtering and combination steps are split into two steps by
utilizing  factorized  convolutions:  depth-wise  separable
convolutions.

Gk,l,n  = ∑       I,j,m,n   Fk+i-1, l+j-1, m      
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Depth-wise convolutions and point-wise convolutions are
the  constituents  of  depthwise  separable  convolution.  Depth-
wise convolutions apply a single filter per each input channel.
1 X 1 point-wise convolution then creates a linear combination
of  the  depthwise  layer's  output.  Batchnorm  and  ReLU  non-
linearities  are  utilized  for  both  depth-wise  and  point-wise
convolution  layers.  The  standard  and  depth-wise  separable
convolution has been distinguished, as shown in Fig. (5). For
one filter per input channel, the depth-wise convolution is as
shown by equation 3, where  is the depth-wise convolution
kernel of size DK × DK × M, where the mth filter in  is applied
to the channel of the filtered output feature map Ĝ .

Fig. (5). Replacement of (a) Standard Filters with (b) Depth-Wise and
(c) Point-Wise.

(3)

Depth-wise convolution is significantly efficient relative to
standard  convolution.  The  computational  cost  of  depth-wise
convolution is as shown by Eq 4.

(4)

Depth-wise  convolution  only  filters  input  channels;
however,  these  are  not  combined  to  create  new features.  An
additional layer to compute a linear combination of the output
of depthwise convolution through 1 X 1 convolution is needed
to generate these new features.

Thus,  the  combination  of  depth-wise  convolution  and
point-wise  convolution  is  called  Depth-Wise  Separable
Convolution.  Fig.  (6)  helps  visualize  the  architectural
difference  between  standard  and  depth-wise  separable
convolutions considering 3 X 3 convolutions. The sum of the
depthwise  and  1  X  1  point-wise  convolutions  gives  us  the
Depth-Wise Separable Convolutions cost, as shown by Eq 5.

(5)

Hence, by expressing convolution as an amalgamation of

separate filtering and combination steps, the computation cost
can be significantly reduced, as shown by Eq 6.

(6)

Thus,  the  proposed  method  implements  depth-wise
separable  convolution  for  efficient  throat  inflammation  and
chest x-ray based COVID-19 diagnosis.

3.2.  Throat  Inflammation  based  COVID-19  Early
Prediction

Throat inflammation is one of the perceivable symptoms of
COVID-19 that can be utilized for efficient mass screening of
susceptible patients. This section formulates the deep learning
architecture  for  throat  inflammation  detection,  which  can  be
deployed for accurate early prediction of Coronavirus patients.
The utilization of fine-tuning and transfer learning techniques
has  been  proposed  considering  the  limited  dataset  acquired
from web-scrapping and medical professionals' aid.

Fig.  (6).  Architectural  difference between Standard and Depth-Wise
separable convolutions.

MobileNet consisting of 28 layers utilize 3 X 3 depthwise
separable  convolutions.  The  original  MobileNet  has  been
trained  and  evaluated  over  millions  of  images  across  1000
classes of the ImageNet [16] dataset. Dense layers are added to
the  pre-trained  model,  and  the  entire  model  has  been  fine
tuned.  Using  the  pre-trained  weights  entirely  is  not  practical
since  this  research  focuses  on  biomedical  image-based
classification for COVID-19 prediction. Since the initial layers
extract  low-level  features,  including  edges  and  shape,
preserving  them  becomes  imperative.  As  shown  in  Fig.  (7),
dense  layers  have  been  added  for  classification,  and  all  the
layers except the last 21 layers have been frozen. Experiments
on the fine-tuned model indicate promising results and validate
the described idea.

3.3. Chest X-Ray based COVID-19 Diagnosis
Once  the  mass  screening  and  early-prediction  have  been

performed  by  utilizing  throat  inflammation-based  analysis,
accurate  diagnosis  can  be  performed  by  implementing  the
proposed  architecture  for  Chest  X-Ray  based  analysis  since
several  COVID-19  patients  have  been  diagnosed  with
pneumonia;  hence  radiological  examination  is  considered
beneficial.

 ̂k,l,m = ∑  ̂   I,j,m    Fk+i-1, l+j-1, m         
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Xception  architecture  consisting  of  a  linear  stack  of  36
depth-wise  separable  convolutional  layers  with  residual
connections  for  feature  extraction  has  been  effectively  fine-
tuned.  As shown in Fig.  (8),  specific dense layers have been
added for accurate classification. The original XceptionNet has
been trained and evaluated over millions of images across 1000
classes  of  the  ImageNet  dataset.  As  mentioned  previously,
initial  layers  extract  fundamental  features;  subsequently,  the
first 26 layers are frozen. Experiments showcase commendable
results and indicate the reliability of the method for confirming
the patient's susceptibility.

3.4. Loss Function and Label Smoothing

The  proposed  architectures  for  Throat  Inflammation  and
Chest X-Ray based COVID diagnosis deploy the Categorical
Cross-Entropy Loss, also known as the Softmax Loss: Softmax
Activation followed by a Cross-Entropy Loss.

The  architecture  is  trained  to  output  the  probability
distribution over the classes for each image.  Considering the
One-Hot Encoding of the classes, the loss can be elucidated as:

The derivative respect to positive and negative classes can
be shown by Eqs. 7 and 8.

(7)

(8)

Label smoothing technique replaces one-hot encoded label
with its mixture with uniform distribution. Label Smoothing is
beneficial  when  the  loss  function  is  cross-entropy,  and  the
model applies the softmax function to the penultimate layer to
compute its output probabilities. The One-Hot encoded labels
encourage the most extensive possible logit gaps to be fed into
the softmax function.

Intuitively,  large  logit  gaps  combined  with  the  bounded
gradient make the models less adaptive and too confident about
their  predictions.  The  smoothed  labels  encourage  small  logit
gaps  and  subsequently  result  in  better  model  calibration  and
prevent overconfident predictions.

3.5. Optimizer

To ensure quick convergence, such that the loss function
reaches  the  local  minima  in  less  number  of  epochs,  a
meticulously selected optimizer  must  be incorporated.  Adam
[17]  optimizer  ensures  quick convergence,  such that  the  loss
function reaches the local minima in fewer number of epochs.

Adam's learning rate is scaled by utilizing squared gradients,
and the advantage of the Momentum is taken by applying the
moving average of the gradient.

If  the  decaying  hyperparameter  determines  how  rapidly
accumulated previous gradients decay is much larger than the
learning rate, then the accumulated previous gradients will be
dominant in the update rule; hence the gradient at the iteration
will  not  change  the  current  direction  rapidly.  On  the  other
hand, if the decaying hyperparameter is much smaller than the
learning  rate,  the  accumulated  gradients  act  as  a  smoothing
factor for the gradient.

To overcome this, Nesterov Accelerated Gradient (NAG)
[18] calculates the gradient w.r.t approximate future position of
various parameters. NAG thus acts as the correction factor for
the Momentum method. Moreover, NAG mitigates the issue of
oscillations  that  arise  in  the  Momentum  method  at  large
learning  rates.  Nesterov-accelerated  Adaptive  Moment
Estimation (Nadam) [19, 20] combines Adam and NAG, such
that  Nadam  can  be  interpreted  as  Adam  with  Nesterov
momentum

Consider the following notations:

wt – Weight at timestamp t

gt – Gradient w.r.t w at timestamp t

α – Learning Rate

m – Estimate for the first moment of gradient

v – Estimate for the second moment of gradient

Such that:

(9)

(10)

(11)

(12)

Considering ADAM as an optimizer:

(13)

Considering NADAM as an optimizer:

(14)

The  Nesterov  acceleration  over  Adam  promotes  faster
convergence  of  the  loss  function  to  the  local  minima  as
compared to Adam. Hence, the proposed architecture utilizes
Nadam  as  an  optimizer  for  the  Throat  Inflammation  based
mass-screening and early-prediction; and Chest X-Ray based
COVID-19 diagnosis.
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Fig.  (7).  Proposed  architecture  for  throat  inflammation  based
COVID-19  early-prediction.

Fig.  (8).  Proposed  architecture  for  Chest  X-Ray  based  COVID-19
Diagnosis.
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4. EXPERIMENTS AND RESULTS

4.1. Data Preparation

For  throat  images,  the  data  was  collected  from  the  web
through  extensive  web  scraping.  Around  200  images  were
identified  to  be  of  interest,  out  of  which  146  images  had
sufficient  visual  information for  classification and were  then
segregated  into  infected  and  normal  images  by  a  medical
professional  [21].  Moreover,  image  augmentation  steps  like
width shifting, height shifting, brightness range, zooming were
performed  for  the  deep  learning-based  method  so  that  the
learned  model  could  be  better  at  generalizing  all  conditions.
Augmentation  resulted  in  a  total  of  300  images  which  were
further divided into training and validation.

An openly available public dataset was utilized for training
the Chest X-ray model. To train the chest X-Ray model, two
combined  datasets,  i.e.,  for  COVID  Positive  images,  182
images of the posteroanterior (PA) view were collected from
the IEEE Dataport [22], which is a growing collection of chest
radiography  images  and  images  of  normal  patients  were
obtained from Kaggle's Chest X-Ray (Pneumonia) [23] dataset.

4.2. Training Details

Model  training  was  achieved  using  the  Tensorflow
framework.  The  input  image  was  resized  accordingly  to  the
input requirement of the models. The throat infection detection

model was trained using the following hyperparameters:

Number of epochs: 100
Batch size: 32
Optimizer: NADAM
Momentum Parameters: β1 = 0.9 and β2 = 0.999
Learning Rate: 3e-4

The model for Chest X-Ray analysis was trained using the
following hyperparameters:

Number of epochs: 10
Batch size: 32
Label Smoothing: 0.01
Optimizer: NADAM
Momentum Parameters: β1 = 0.9 and β2 = 0.999
Learning Rate: 3e-4

The  convergence  of  training  and  validation  loss  for  the
throat infection model is shown in Figure 9. The figure shows
that the model correctly classifies whether the input image is
throat infected or not.

As showcased in Fig. (9), training loss and validation loss
are converging with an increase in epochs, and there is not any
significant difference in training and validation loss; hence one
can even conclude that model is not overfitting. The training
accuracy can be observed in Fig. (10).

Fig. (9). Training and validation loss for throat inflammation based early-prediction.

Fig. (10). Training and Validation accuracy for throat inflammation based early-prediction.
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Fig. (11). Training and validation loss for chest radiography based COVID-19 diagnosis.

Fig (12). Training and validation accuracy for chest radiography based diagnosis.

Further,  the  chest  X-Ray  classification  model  for
COVID-19  architecture  demonstrates  promising  results  as
represented  (Figs.  11  and  12).

4.3. Evaluation

For  evaluating  medical  models,  choosing  the  right  and
sufficient evaluation metrics is necessary as these metrics play
an important role in ascertaining the practical performance. In
this  section,  various  evaluation  metrics  are  described  and
calculated.

The  confusion  matrix  mentions  the  model's  outcomes  in
terms of the true positive, the true negative, the false positive,
and  the  false-negative  samples.  Tables  1  and  2  show  the
Confusion Matrix for the model's predictions w.r.t the ground
truth.

Table 1. Confusion matrix for throat inflammation based
early-prediction.

Normal Infected
Predicted Normal 45 5
Predicted Infected 4 46

Table  2.  Confusion  matrix  for  chest  radiography  based
diagnosis.

Normal Infected
Predicted Normal 43 2
Predicted Infected 1 44

These values can be used to calculate different parameters
such  as  Positive  Predicted  Value  (PPV),  Negative  Predicted
Value (NPV), Sensitivity, Specificity, F1 Score, and Accuracy.
All  the  metrics  mentioned  above  have  been  calculated  and
summarized in Table 3.

Table 3. Evaluation metrics.

Evaluation
Metric

Throat Inflammation Chest Radiography

Sensitivity 0.90 0.95
Specificity 0.91 0.97

PPV 0.92 0.97
NPV 0.90 0.95
FPR 0.08 0.02
FNR 0.09 0.04

Accuracy 0.91 0.96
F1 Score 0.91 0.96

MCC 0.82 0.93

CONCLUSION

A novel multi-modal method for mass screening and early
diagnosis of potential coronavirus patients has been proposed.
The  proposed  method  identifies  the  symptoms  of  throat
inflammation by leveraging dedicatedly fine-tuned Mobile Net
based  architecture.  The  results  are  then  validated  by
performing  Chest  X-Ray  based  COVID  diagnosis  by
implementing  fine-tuned  Xception  Net  architecture.  Depth-
Wise separable convolutions have been deployed to promote
the reduction in computational complexity. NADAM optimizer
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has been leveraged to promote faster convergence. Evaluation
of  the  proposed  method  indicates  promising  results  and
subsequently  validates  the  clinical  reliability  of  the  idea.

The  future  direction  of  this  work  could  be  working  on  a
larger dataset in close collaboration with the medical fraternity.
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