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Abstract:
Background:
Medical  image  fusion  methods  are  applied  to  a  wide  assortment  of  medical  fields,  for  example,  computer-assisted  diagnosis,  telemedicine,
radiation treatment,  preoperative  planning,  and so  forth.  Computed Tomography (CT) is  utilized to  scan the  bone structure,  while  Magnetic
Resonance Imaging (MRI) is utilized to examine the soft tissues of the cerebrum. The fusion of the images obtained from the two modalities helps
radiologists diagnose the abnormalities in the brain and localize the position of the abnormality concerning the bone.

Methods:
Multimodal medical image fusion procedure contributes to the decrease of information vulnerability and improves the clinical diagnosis exactness.
The motive is to protect salient features from multiple source images to produce an upgraded fused image. The CT-MRI image fusion study made
it conceivable to analyze the two modalities straightforwardly.

Several states of the art techniques are available for the fusion of CT & MRI images. The discrete wavelet transform (DWT) is one of the widely
used transformation techniques for the fusion of images. However, the efficacy of utilization of the variants of wavelet filters for the decomposition
of the images, which may improve the image fusion quality, has not been studied in detail. Therefore the objective of this study is to assess the
utility of wavelet families for the fusion of CT and MRI images. In this paper investigation on the efficacy of 8 wavelet families (120 family
members) on the visual quality of the fused CT & MRI image has been performed. Further, to strengthen the quality of the fused image, two
quantitative performance evaluation parameters, namely classical and gradient information, have been calculated.

Results:
Experimental  results  demonstrate  that  amongst  the  120 wavelet  family  members  (8  wavelet  families),  db1,  rbio1.1,  and Haar  wavelets  have
outperformed other wavelet family members in both qualitative and quantitative analysis.

Conclusion:
Quantitative and qualitative analysis shows that the fused image may help radiologists diagnose the abnormalities in the brain and localize the
position of the abnormality concerning the bone more easily. For further improvement in the fused results, methods based on deep learning may be
tested in the future.
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1. INTRODUCTION
Image  fusion  has  been  employed  in  a  variety  of

applications,  viz.  remote  sensing,  medical  imaging,  military,
and  astronomy.  The  bits  and  pieces  provided  by  different
imaging modalities can be knitted for a better understanding of
the  entity under  observations. For a  faithful replication of the
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human  organ  with  or  without  pathology,  such  an  idea  is
appreciated. Several image registration and fusion techniques
have been discussed in the context of applying them to patient
studies  obtained  during  clinical  workup.  Wavelet
transformation-based  methods  are  explored  extensively  for
multimodal  image  fusion,  but  an  exhaustive  comparison  of
various  mother  wavelets  under  discrete  wavelet  transform is
not documented yet.

The  determination  of  the  imaging  methodology  for  a
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medical  investigation  requires  clinical  bits  of  knowledge
explicit to organs under examination. It is difficult to catch all
the  subtleties  from  one  imaging  methodology  that  would
guarantee  the  clinical  exactness  and  strength  of  the
investigation and resulting diagnosis.  The intuitive idea is  to
take  a  gander  at  images  from different  modalities  to  make  a
faithful and precise evaluation. A trained medical practitioner
can  evaluate  subtleties  that  supplement  the  individual
modalities.  For  instance,  Computed  Tomography  is  broadly
utilized for tumour and anatomical identification, though soft
tissues  are  better  captured  by  magnetic  resonance  imaging.
Further,  T1  weighted  MRI  gives  insights  concerning  the
anatomical  structure  of  tissues,  though  T2  weighted  MRI
highlights  normal  and  pathological  tissues  [1].

The  fusion  of  the  images  obtained  from  these  two
modalities that is CT and MRI, to form a single fused image,
will  help radiologists diagnose the abnormalities in the brain
and  localize  the  position  of  the  abnormality  concerning  the
bone.  The motive is  to  protect  salient  features  from multiple
source images to produce an upgraded fused image. The CT-
MRI  image  fusion  study  made  it  conceivable  to  analyze  the
two modalities  straightforwardly.  Multimodal  medical  image
fusion  procedure  contributes  to  the  decrease  of  information
vulnerability and improves the clinical diagnosis exactness.

A comprehensive study of multisensor image fusion based
on  wavelet  was  executed  by  H  Li  and  team,  where  the
emphasis  was  on  fusion  rule  [2].  They  have  experimentally
evaluated the performances of simple fusion rule versus area-
based maximum selection rule and demonstrated the effective
extraction of salient features at different resolutions. David A.
Yocky  [3]  also  tested  a  wavelet  merger  for  the  fusion  of
panchromatic and spectral images and compared the findings
with  the  fusion  results  of  the  intensity-hue-saturation  (IHS)
merger.

In  the  quest  of  finding  the  best  schema of  image  fusion,
hybridization  of  existing  techniques  and  updating  of  fusion
rules had been devised. A regular DWT was made more skilled
for multimodality fusion by Yufeng and his team [4] by adding
the  power  of  Principal  component  analysis  (PCA)  and
morphological  processing,  and they called it  advanced DWT
(aDWT). They also suggested a new quantitative metric, “ratio
of  spatial  frequency  error”  for  fusion  assessment.  The
hybridization of various techniques for the betterment of fusion
results is one of the most experimented methods [5–9].

An  unorthodox  fusion  scheme  was  proposed  by  Yong
Yang  et  al.  [10],  where  they  exploited  maximum  absolute
values  and  maximum  variance  rules  for  low  frequency  and
high-frequency coefficients, respectively. There is a study [11]
where authors have used wavelet transform modulus maxima

rather than wavelet transform coefficients and claimed that in
this  manner,  the  edge  and  margin  information  could  be
preserved.

The MRI-PET (Positron emission tomography) image pair
is  among  the  fairly  explored  multimodal  fusion
experimentation. A 4-level DWT was employed by Bhavna et
al. [12] to synthesize PET images into its high activity and low
activity regions, which were further fused with MRI images in
the  transformed  domain.  The  authors  concluded  that  their
DWT-based  fusion  method  outperforms  the  conventional
fusion techniques. In a row of applying multilevel DWT, there
is one such study where authors have compared DWT versus 3-
level DWT on CT-MRI pairs and demonstrated the superiority
of  multilevel  based  on  visual  as  well  as  some  quantitative
parameters.

Siddalingesh  et  al.  [13]  have  declared  the  superiority  of
feature-level image fusion, although it takes much time. They
have  compared  DWT,  stationary  wavelet  transforms  (SWT),
and  dual-tree-  complex  wavelet  transform  (DT-CWT)  and
concluded  DT-CWT  as  the  winner  as  it  takes  care  of
directionality. The compendium of multimodality fusion is full
of experimentation with hybridization, updating infusion rules,
new  versions  of  the  wavelet  transform,  and  deep  neural
networks.  However,  an exhaustive study of DWT families is
not conducted.

The  rest  of  the  paper  is  structured  as  follows:  Section-2
presents the methodology employed for the investigation of the
efficacy of  the  wavelet  functions  for  the  fusion of  the  CT &
MRI image. The result and discussion section are detailed in
section-3. The work has been concluded in section-3.

2. METHODOLOGY

The schematic representation of the proposed approach for
the investigation of the suitability of DWT wavelet families for
image fusion is illustrated in Fig. (1).

The essential requirement for the CT & MRI images is that
they should be spatially registered [14]. These input images are
individually transformed into wavelet domains with the help of
forwarding discrete wavelet transform (FDWT). For the current
investigation, we have restricted the image decomposition until
level-2 only. Wavelet family’s viz., Haar, Daubechies, Coiflet,
Biorthogonal,  Reverse  biorthogonal,  Symlets,  Discrete
approximation of Meyer wavelet, and Fejer-Korovkin wavelets
have been used for decomposition. A total of 120 variants of
wavelet  family  members  have  been  employed  here,  and  the
efficacy of individual wavelet functions on the fusion result has
been  investigated.  It  has  been  established  that  simultaneous
localization in spatial and frequency domain is accomplished
using wavelet transform. Thus, the rationale behind the use of
the  max  fusion  rule  only  is  justified  with  the  help  of  the
following  two  cases.

Fig (1). Flowchart of the proposed method.
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Case 1: When the object of interest looks quite distinctive
in  image  1  in  contrast  to  image  2,  the  fused  image  obtained
with the max rule will preserve the object of interest in image
1, whereas the same object in image 2 will be discarded.

Case  2:  Let  the  outer  boundary  and  inner  boundary  of
image 1 and image 2 look distinctive from each other; under
such  a  scenario,  the  wavelet  coefficients  of  both  the  images
will be distinctive at different scales. When applied max fuse
rule,  it  can  retain  the  distinctive  information  of  image  1  and
image 2, respectively, in the fused image.

The fused image in the wavelet domain is transformed into
the spatial domain using an inverse discrete wavelet transform.

3. THE THEORETICAL BACKGROUND OF DISCRETE
WAVELET TRANSFORMS

The  most  standard  wavelet  decomposition  utilized  for
image filtering is DWT [15]. The Wavelets are mathematical
functions  used  for  decomposing  the  signal  into  various
frequency components  and,  after  that,  concentrate  every part
with a resolution coordinated to its scale. In two-dimensional
DWT, the one-dimensional DWT is applied along the rows in
the first step, and then the columns of the result are processed
to produce four sub-images in the transformed space: LL, LH,
HL,  and  HH.  The  DWT  is  widely  used  in  various  image
handling  applications,  for  example,  image  denoising,
segmentation, feature extraction [15, 16], and image indexing
[17, 18]. Fig. (2) illustrates the level 1 DWT decomposition of
an image.

In  this  paper,  eight  types  of  wavelet  filters  (Haar,
Daubechies,  Symlet,  Coiflet,  Fejer-Korovkin,  DMeyer,
Biorthogonal, and Reverse Biorthogonal) have been used. Haar
wavelet  is  the  very  first  and  simplest  wavelet  family  that
belongs  to  the  Finite  Impulse  Response  (FIR)  filter.  It  is
discontinuous and bears a resemblance to a step function [19].
Daubechies  is  a  compactly  supported  orthonormal  wavelet
family that was proposed by Ingrid Daubechies. The variants of

the  Daubechies  family  are  represented  as  dbN,  where  “db”
corresponds to the surname of the inventor and N is the order.
The  db1  wavelet  bears  characteristics  similar  to  the  Haar
wavelet  [19,  20].  The Bioorthogonal wavelets  are symmetric
and found to have compact support [21]. It makes use of two
wavelets,  one  for  decomposition  and  the  second  one  for
reconstruction to extract useful properties. This wavelet is most
suitable  for  the  reconstruction  of  signals  and  images  as  it
exhibits  linear  phase  property.

At the request of Ronald Coifman, Ingrid Daubechies has
designed  another  wavelet  called  Coiflets  which  is  nearly
symmetrical  as  well  as  features  scaling  functions  with
vanishing  moments.  Further,  Daubechies  has  proposed
Symlets, which has nearly symmetrical wavelet characteristics
obtained by modifying the db family [22].

Fejer-korovkin is indeed symmetrical and soft as opposed
to db. Approximation theory is the area where it  finds major
applications.  A  seminal  contribution  in  the  field  of  wavelet
filtering  was  made  by  a  harmonic  analyst,  whose  FIR-based
approximation  was  called  Discrete  Meyer  (DMeyer),  which
possesses infinite differentiable properties. It is an orthogonal,
symmetric, and compactly supported wavelet. To acquire more
freedom than conventional orthogonal wavelets, biorthogonal
wavelets were introduced, which must be invertible. It uses two
wavelets for decomposition and reconstruction. With the use of
biorthogonal  spline  wavelets,  the  Reverse  Biorthogonal
wavelets  were  produced,  which  preserves  the  symmetrical
nature  of  the  filter  and  reconstruction.

4. RESULTS & DISCUSSION

In this section, the efficacy of the wavelet families on the
fusion of registered CT & MRI images has been investigated.
All the results are obtained using the MATLAB 2016b version
installed in 2.4 GHz CPU, Core i5, 4 GB RAM, 128 GB SSD,
and  Windows  10  Operating  system.  The  dataset  and
performance  evaluation  matrix  is  described  in  the  following
subsections:

Fig (2). Block diagram representing first level DWT decomposition for an image.
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4.1. Dataset

To  investigate  the  performance  of  120  wavelet  family
members,  three  datasets  of  pairs  of  CT and  MRI  images  are
collected  from  an  online  database  available  at
http://www.med.harvard.edu. The pair of CT and MRI images
are  already  registered  with  each  other,  due  to  which  image
fusion  methods  are  directly  implemented  on  these  datasets.
Dataset 1 is a case of metastatic bronchogenic carcinoma and
belongs to a 42-year-old woman. Dataset 2 belongs to a patient
of 63 years of age suffering from acute stroke, who can write
but  cannot  read.  Dataset  3  is  a  case  of  a  22-year-old  patient
suffering  from  Sarcoma.  Several  brain  slices  were  obtained
with the complete scan of the brain of all the patients. All the
brain slices are in the axial plane. Slice numbers 10, 12, and 20
are randomly selected for testing the performance of different
wavelet families. All the images of the datasets are in grayscale
format and are of the size 256×256.

4.2. Performance Evaluation Matrix

The image fusion results can be evaluated using subjective
and  objective  approaches.  The  subjective  approaches  are
considered  to  be  complex as  they are  based on psychovisual
testing  and  cannot  be  applied  in  an  automatic  system.  In
addition to this, the inter-observer variability is the challenge in
image  fusion,  which  leads  to  the  need  for  a  quantitative
parameter evaluation matrix to measure the efficacy of fused
images.  The  present  work  employs  classical  evaluation
parameters  and  gradient  information  parameters.  Classical
evaluation  parameters  used  in  this  work  are  correlation
(average  normalized  correlation),  mutual  information  (MI),
entropy,  fusion  symmetry  (FS),  spatial  frequency  (SF),  and
average gradient (AG). The values of these parameters should
be  higher  for  better  fusion.  The  gradient  information  [23]
parameters considered here are QAB/F, LAB/F, NAB/F, which stands
for  the  total  amount  of  information  transferred  from  source
image  to  fused  image,  total  loss  of  information,  and
artifacts/noise added to fused image during the fusion process,
respectively. Out of these three parameters, a higher value of
QAB/F, whereas lower values of LAB/F and NAB/F are expected.

The images under investigation have been first processed
using DWT, which produces four sub-images at the 1st level of

decomposition,  namely  LL,  HL,  LH,  and  HH.  In  the  second
level  of  decomposition,  the LL sub-image of the 1st  level  of
decomposition has been further decomposed to obtain 4 images
(LL, HL, LH and HH). Subsequently, the max fusion rule has
been applied to the decomposed sub-images (i.e., 7 sub-images
obtained  from  the  decomposition).  The  fused  image  is  then
transformed back into a spatial domain using inverse discrete
wavelet transform (IDWT), which shall be useful to the doctors
or can be used by the machine for further analysis. The visual
representation of the images produced at every stage is shown
in Fig. (3).

All  the  120  wavelet  filters  are  exhaustively  tested  on  all
three datasets. Out of 120 wavelet family members, those who
have produced better-fused images in terms of visualization are
as  follows:  Haar,  db1  &  db2  (Daubechies  wavelet  family),
sym2 & sym4 (Symlets wavelet family), coif2 & Coif4 (Coiflet
wavelet family), fk4 & fk6 (Fejer-Korovkin wavelet family),
dmey  (DMeyer  wavelet  family),  bior2.2  &  bior2.4
(Biorthogonal wavelet family), and rbio 1.1 & rbio1.3 (Reverse
Biorthogonal  wavelet  family).  The  top  two  results  of  all  the
eight  families  in  terms  of  both  visual  appearance  as  well  as
quantitative parameters are displayed here.

Figs.  (2-6)  represent  the  input  dataset  used  and  the
corresponding  fused  images  obtained  using  the  following
wavelets: db1, db2, sym2, sym4, coif2, coif4, fk4, fk6, bior 2.2,
bior  2.4,  rbio  1.1,  rbio1.3,  dmey,  and  Haar.  In  Fig.  (3),  the
input  CT  and  MRI  images  from  dataset  1,  which  are  fused
using different wavelet family members, are displayed in 4(a)
and 4(b), respectively. Since soft tissues of the brain are best
scanned with MRI, whereas bone information is collected with
CT,  therefore  the  best  fusion  method  should  preserve
information of the soft tissues from MRI, whereas information
of  the  bones  must  be  taken  from  CT  image.  Analyzing  the
fused images represented in Fig. (4), it has been observed that
the texture of the soft tissues present in MRI got mixed with
the information of the soft tissue in CT, due to which texture
loss in the soft tissues is visible in all the fused images obtained
with  different  wavelets.  However,  comparing  all  the  fused
images with each other, it  can be seen that the texture of the
soft  tissues  is  somewhat  better  visible  in  the  fused  images
obtained from db1, rbio 1.1, and Haar wavelets.

Fig. (3). Fusion of CT & MRI images using 2nd level DWT and max rule-based fusion.

http://www.med.harvard.edu
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Fig (4). (a) Input CT Image (b) Input MRI Image; Fused Image obtained with (c) db1 (d) db2 (e) sym2 (f) sym4 (g) coif2 (h) coif4 (i) fk4 (j) fk6 (k)
bior 2.2 (l) bior 2.4 (m) rbio 1.1 (n) rbio 1.3 (o) dmey (p) Haar.

Fig 5. (a) Input CT Image (b) Input MRI Image; Fused Image obtained with (c) db1 (d) db2 (e) sym2 (f) sym4 (g) coif2 (h) coif4 (i) fk4 (j) fk6 (k)
bior 2.2 (l) bior 2.4 (m) rbio 1.1 (n) rbio 1.3 (o) dmey (p) Haar.

Dataset 1 consists of MRI and CT scans having metastatic
bronchogenic  carcinoma,  which  is  visible  in  the  MRI  scan
compared  to  the  CT  scan.  It  should  appear  the  same  in  the
fused  images  as  it  appears  in  the  MRI.  It  has  been  observed
that  metastatic  bronchogenic  carcinoma  is  visible  in  all  the
fused images, as illustrated in Fig. (4). However, since the soft
tissue texture is visible in a better way from the fused images
obtained using db1, rbio 1.1, and Haar wavelets, therefore the
contrast between the soft tissue and the carcinoma is better in
the three fused images as compared to fused images obtained

from other wavelets.

As it comes to the bone structure information present in the
fused images, it has been observed that some information loss
took place in the fused images. Although bone appears good in
CT,  the  transition  from the  skull  to  the  brain  is  smoother  as
compared to the MRI scans. Thus the boundary of the skull is
pretty visible in the MRI. Consequently, when the fusion rule is
applied, it emphasizes the edges of MRI, and it is evident in the
results of all the wavelet family members.
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Fig 6. (a) Input CT Image (b) Input MRI Image; Fused Image obtained with (c) db1 (d) db2 (e) sym2 (f) sym4 (g) coif2 (h) coif4 (i) fk4 (j) fk6 (k)
bior 2.2 (l) bior 2.4 (m) rbio 1.1 (n) rbio 1.3 (o) dmey (p) Haar.

Fig (7a). Classical evaluation parameters of dataset 1 for selected wavelet families.

Fig (7b). Classical evaluation parameters of dataset 2 for selected wavelet families.
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Similarly, in Figs. (5 and 6), images (a) and (b) represent
CT & MRI input images of datasets 2 and 3, respectively. The
remaining  images  in  both  the  figures  are  the  fused  images
obtained by the application of selected wavelets families. For
these  two  datasets  also  db1,  rbio1.1,  and  Haar  wavelet  have
produced better visual quality fused images, which are in line
with dataset 1 discussed earlier in detail.

In  the  light  of  the  above  discussion,  it  can  be  concluded
that  fused  results  obtained  from  db1,  rbio  1.1,  and  Haar
wavelets are much better in comparison to other wavelets from
a  qualitative  analysis  perspective.  But  as  subjective  differs
from  person  to  person,  to  prove  the  efficacy  of  the  fusion
image quality,  quantitative  performance analysis  needs  to  be
performed from the machine vision perspective. Therefore, two
performance  measurement  classes,  namely,  classical
quantitative analysis and gradient information parameters, have
been calculated for the fused images.

These  two  classes  of  quantitative  parameters  have  been
illustrated in Figs. (7a-7d), respectively. As per the literature,
the six classical qualitative parameters should be higher, but for
the fused images obtained using wavelet filters db1, rbio 1.1,
and  Haar,  the  value  of  AG and  FS1  is  high.  In  contrast,  the
value of entropy, FS, and MI are low. Altogether the values of
classical  parameters  are  not  in  harmony  with  the  visual
appearance. Thus, their validity for the justification of fusion

results cannot be trusted.

The  gradient-based  quantitative  analysis  represented  in
Fig. (8a-8d) depicts that the value of QABF is on the higher
side. In contrast,  LABF and NABF are on the lower side for
wavelet filters db1, rbio 1.1, and Haar (The summation of the
three parameters should be equal to unity. If the value is more
than  unity,  then  NABF1 is  calculated).  This  goes  directly  in
favor  of  the  visual  analysis.  Hence,  it  can  be  concluded  that
gradient-based quantitative parameters are faithful parameters
to determine the efficiency of the fusion method for MRI-CT.

With quantitative analysis, it is proved that the fused image
carries  all  the  relevant  information  from  both  CT  and  MRI
images,  whereas  qualitative  analysis  shows  that  the  fused
image  carries  all  the  visible  information  from  both  CT  and
MRI images, therefore fused image may help radiologists for
diagnosing the abnormalities in the brain and in localizing the
position of the abnormality concerning the bone more easily.

The DWT-based CT-MRI image fusion method presented
in  the  paper  is  feasible  for  the  design,  optimization,  and
verification  of  treatment  planning  in  the  context  of  making
appropriate and precise decisions by medical experts. Further,
previous  feasibility  studies  [24,  25]  of  medical  image fusion
have also suggested that the treatment planning based on fused
CT and MRI images resulted in improved target volume and
risk structure definition.

Fig 7(c). Classical evaluation parameters of dataset 3 for selected wavelet families.

Fig 8(a). QAB/F evaluation parameters for selected wavelet families.
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Fig (8b). LAB/F evaluation parameters for selected wavelet families.

Fig (8c). NAB/F evaluation parameters for selected wavelet families.

Fig (8d). NAB/F1 evaluation parameters for selected wavelet families.

CONCLUSION
In this work, the authors have investigated the influence of

eight  different  wavelet  family  members  on  the  image  fusion
quality for registered CT & MRI images. The max fusion rule
has been used for investigating the efficacy of the DWT family

members for improving the fused image quality. Out of the 8
family members under the study, it is observed that db1, rbio
1.1,  and  Haar  wavelet  functions  have  given  the  best  fusion
result in the context of the visual quality of the fused images.
Further,  to  strengthen  our  observation  in  addition  to  the
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subjective  approach,  the  classical  and  gradient  information
evaluation parameters have also been calculated. It is observed
that  the  gradient  information  evaluation  parameters  are
supporting the visual appearance of infused images. However,
the  classical  evaluation  parameters  are  not  in  line  with  the
visual appearance of the fused images.

Quantitative and qualitative analysis shows that the fused
image may help radiologists diagnose the abnormalities in the
brain and localize the position of the abnormality concerning
the  bone  more  easily.  For  further  improvement  in  the  fused
results, methods based on deep learning may be tested in the
future.
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