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Abstract:

Background:

The  process  of  In  Vitro  Fertilization  (IVF)  involves  collecting  multiple  samples  of  mature  eggs  that  are  fertilized  with  sperms  in  the  IVF
laboratory. They are eventually graded, and the most viable embryo out of all the samples is selected for transfer in the mother’s womb for a
healthy pregnancy. Currently, the process of grading and selecting the healthiest embryo is performed by visual morphology, and manual records
are maintained by embryologists.

Objectives:

Maintaining manual records makes the process very tedious, time-consuming, and error-prone. The absence of a universal grading leads to high
subjectivity and low success rate of pregnancy. To improve the chances of pregnancy, multiple embryos are transferred in the womb elevating the
risk of multiple pregnancies. In this paper, we propose a deep learning-based method to perform the automatic grading of the embryos using time
series prediction with Long Short Term Memory (LSTM) and Convolutional Neural Network (CNN).

Methods:

CNN extracts the features of the images of embryos, and a sequence of such features is fed to LSTM for time series prediction, which gives the
final grade.

Results:

Our model gave an ideal accuracy of 100% on training and validation. A comparison of obtained results is made with those obtained from a GRU
model as well as other pre-trained models.

Conclusion:

The automated process is robust and eliminates subjectivity. The days-long hard work can now be replaced with our model, which gives the
grading within 8 seconds with a GPU.
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Convolutional  Neural  Networks.
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1. INTRODUCTION AND BACKGROUND

Infertility  has  become  a  global  health  issue,  and  global
statistics indicate that 8-10% of couples suffer from infertility
[1]. According to the World Health Organization (WHO), 1 out
of  every  4  couples  is  affected  by  infertility  [2].  As  a  result,
there has been a drastic increase in the number of couples seek
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-ing  In  Vitro  Fertilization  (IVF)  worldwide.  Globally,
approximately 5 million children have been born with the help
of IVF [3]. However, some couples remain childless even after
several IVF cycles. Due to the uncertainty in the viability of the
embryos, multiple embryos are transferred for maximizing the
odds  of  pregnancy,  and  hence  women  undergoing  IVF  face
greater  risks  of  multiple  pregnancies  along  with  financial
burden.

The  typical  IVF  cycle  starts  with  collecting  multiple
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samples  of  eggs  and  sperms  from  the  parents,  and  the
fertilization  takes  place  in  a  controlled  environment.  The
fertilized  egg,  now  called  an  embryo,  is  kept  inside  an
incubator  for  5  to  6  days  where  its  development  stages  are
meticulously  examined  by  the  embryologists.  They  assign
grades  to  the  embryo  as  per  its  feature  and  efficient
development with time. The grades are assigned on all days of
the cycle at fixed hours measured with the unit of HPI, which
stands for hours post-insemination. Ultimately, the sample with
the best grading is considered viable for embryo transfer [4].
Incubators with built-in time-lapse monitoring can enable non-
invasive  embryo  assessment.  Comparatively,  fine-grained
detail,  inspiring  significant  interest  in  applying
embryo―morphokinetics  is  needed  to  score  and  prioritize
embryos.  Morphokinetics  comprise  the  timing  and
morphologic  appearance  of  embryos  as  they  grow  and  pass
through a series of sequential developmental stages. Currently,
embryologists  must  perform  the  morphokinetic  analysis
manually. Better accuracy of automated grading is expected as
compared to the human embryologist.

Visual  morphology  assessment  is  routinely  used  for
evaluating embryo quality and selecting human blastocysts for
transfer  after  fertilization  and  complete  development  of  the
embryo. However, it is quite often that there is a difference of
opinion between embryologists since this process is based on
observation of the changes occurring in the embryo samples [5,
6].  As  a  result,  the  success  rate  of  IVF  remains  low,  and
patients  often  have  to  undergo  more  than  one  cycle  of
treatment  before  a  healthy  pregnancy  is  assured.  The  IVF
procedure can cause emotional and psychological stress to the
patients. To overcome such uncertainties in embryo quality, a
method is adopted which involves transferring more than one
embryo to the uterus. This increases the risk of multiple births.
Such  a  pregnancy  with  multiple  fetuses  may  lead  to
complications such as early labor and low birth weight than a
pregnancy  with  a  single  fetus  does.  Moreover,  multiple
pregnancies  also  carry  health  risks  to  the  mother  and  child.
Also, the grading system consists of maintaining long manual
records of analyzing the multiple samples at different times of
the development cycle. This process is very tedious and time-
consuming  and  not  fit  for  the  busy  environment  of  the  IVF
labs.  To  combat  these  issues,  it  becomes  necessary  to  bring
about  changes  in  the  current  techniques,  thus  making  this
procedure  more  efficient.

The  Artificial  Intelligence-driven  approach  provides  an
efficient  way  to  assess  embryo  quality  and  reveals  new,
potentially  personalized  techniques  to  select  embryos.  By
introducing  deep  learning  into  the  field  of  IVF,  we  can
automate  and  standardize  the  grading  process  of  embryos,  a
process that is very dependent on subjective human judgments.
Tsung-Jui Chen et. al. used a deep learning-based approach to
be  applied  to  a  large  dataset  of  embryo  images  [7].  A  CNN
model  was  implemented  using  a  pre-trained  ResNet50
architecture  for  predicting  the  grades.  The  outcomes  of  the
study involved an average predictive accuracy of 75.36% and
exhibited the success of employing deep learning for embryo
grading.

Inspired  by  such  studies,  the  main  aim  of  this  research

paper  is  to  explore  the  capabilities  of  deep  learning  and
artificial intelligence and implement a method based on deep
learning  to  automatically  grade  the  structural  appearance  of
human blastocysts using LSTM-CNN and thus, generate results
that  are  above  human  level  accuracies  to  identify  healthy
embryos  for  IVF.

Some of the main contributions of the paper are as follows:

Understanding  the  parameters  necessary  for  embryo
grading.
Proving  the  importance  and  impact  of  time  series
prediction for grading the embryo.
Implementing an LSTM-CNN Network on the dataset.
Analysis  of  outcomes  of  different  CNN  pre-trained
models on training and validation accuracy.
Implementing GRU, which is also a well-known time
series predictor like LSTM, and analyze its results
Comparing the performance of  embryologist  grading
and  grading  of  our  proposed  model  in  terms  of
accuracy and time taken for the entire grading process

The present study is organized as follows: In Section 2, we
have presented the grading method used by the fertility center
from  where  the  dataset  was  collected.  Here,  we  have  also
presented  related  works  using  deep  learning  for  embryo
grading.  A  brief  explanation  of  the  embryo  development
through different stages,  which is  essential  to understand the
automation in the work done is given. In Section 3, we have
described our proposed methodology for embryo grading using
deep learning. In Section 4, we have described the dataset used,
followed by a detailed discussion on the experimental results
obtained in Section 5. Finally, in Section 6, we have presented
the conclusions offered by the work done.

2. LITERATURE REVIEW

This  section  deals  with  the  detailed  discussion  of  the
embryo development stages which are essential for an intuitive
approach  towards  automating  the  process.  The  development
stages are distributed in 5-6 days and are analyzed on all the
days for predicting the final grade. In the later subsections, we
have  reviewed  the  various  proposed  approaches  adopted  by
researchers with a similar aim.

2.1. Stages of Embryo Development

After the egg sample is fertilized with the collected sperm
sample of  the patient,  they are  kept  under  supervision inside
the incubator where the entire development process from the
single  fused  cell  till  the  blastocyst  stage  takes  place.  The
development  stages  of  the  embryo  in  the  incubators  are  as
follows [8]:

(Day 0 – 1) Pronuclear Stage

During the pronuclear stage, the sperm and the egg unite to
form one single cell. The nucleus of each of these two gametes
combines  to  form  pronuclei.  This  is  essential  for  an
embryologist  to deduce that  the fertilization has successfully
taken  place.  Fig.  (1a)  shows  the  image  of  day  1  of  the
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development  process,  just  after  fertilization.

Fig.  (1).  Stages  of  embryo  development.  (a)  Pronuclear  stage,  (b)
Cleavage stage, (c) Morula stage, and (d) Blastocyst stage.

(Day 1 – 3) Cleavage stage

During  the  cleavage  stage,  the  cell  divides  itself  into
multiples of two. These two cells further split to form four and
so on. They are called the cleavage stage embryos. In Fig. (1b)
the  cell  division  is  visible  clearly,  where  the  two  cells  are
formed.

(Day 3 – 5) Morula stage

Fig. (1c) shows the further splitting of two cells into four.
Usually,  after  day  3,  the  cells  which  have  so  far  splitted
themselves into multiple cells undergo compaction which is a
part of the morula stage. This results in a solid, compact mass
of multiple cells.

(Day 5 – 6) Blastocyst stage

The blastocyst stage is one of the most important stages.
The cells undergo expansion and a visible transformation into
its  2  expected  components:  Inner  Cell  Mass  (ICM)  and  the
Trophectoderm,  which  further  develops  to  become  the  fetus
and  placenta  respectively.  Fig.  (1d)  shows  the  formation  of
ICM and trophectoderm during the blastocyst stage.

2.2. Embryo Grading

Morphology  is  the  primary  method  adopted  by
embryologists  for  the  assessment  of  the  development  of  the
embryo. During IVF, the embryos are cultured till the day of
transfer  and  their  quality  is  tested  during  each  day  of  the
grading cycle. It is essential to evaluate the maturity of the eggs
before  fertilization.  To  assign  a  qualitative  measure  to  the
embryos, various grading methods have been introduced over

the years. However, an ideal universal grading system has not
been  established,  indicating  the  complexity  and  the  dynamic
nature of the embryo along its development stages. As a result,
many  fertility  centers  adopt  grading  schemes  based  on  their
embryo analysis methods.

The  dataset  used  for  our  study  was  procured  from Nova
IVF  Fertility  Center  in  Ahmedabad,  Gujarat,  India  [9].  The
embryologists  of  this  fertility  center  have  adopted  a  typical
method of evaluating the embryos. The embryologists observe
the development stages of the embryo by analyzing the features
as  the  embryo  develops  from  day  1  till  day  5-6.  The
embryologist  assigns  grades  to  the  embryo  from  the  very
beginning when the samples are collected. The sperm and the
egg samples are also individually graded before fertilization.

Once the fertilization is done, the development stages are
constantly analyzed at fixed HPIs starting from day 1 till day 5
or  6  or  even  before,  based  on  the  health  and  viability  of  the
embryo. They maintain a handwritten record of the grades in a
tabular form. A final grade is assigned on the last day before
taking  it  out  of  the  incubator.  Based  on  the  final  grades,  the
viability  of  the  embryo  is  predicted,  and  the  best  sample  or
more are selected and transferred into the mother‘s womb. The
grading  of  the  embryologists  was  made  available  from  the
hospital. The results were handwritten in the form of manual
grades  assigned  to  all  patients  and  all  their  samples.  The
grading  scheme  adopted  [10]  is,  as  shown  in  Table  1.

Table  1.  Conventions  of  the  adopted  embryo  grading
mechanism.

Grade Embryo Quality
A Best
B Good
C Fair
D Poor
E Non-Viable

These  grades  are  allotted  based  on  various  features  like
Degree  of  expansion,  Inner  cell  mass  (ICM),  and
Trophectoderm  (TE),  as  portrayed  in  Fig.  (2).

Fig. (2). Regions of Trophectoderm and ICM.

The best grade embryo has the following features:

The large expansion of blastocyst as indicated in Fig.
(3).
A  large  number  of  uniformly-sized  cells  in  the
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trophectoderm.
Fat  looking  ICM  with  many  cells  tightly  packed
together.

Fig. (3). Embryo blasting.

2.3. Related Works

The grading process and the evaluation of the most viable
embryo for  embryo transfer  are  highly subjective along with
the complexity that arises due to the dynamic nature of embryo
development.  Several  approaches  have  been  proposed  to
automate the grading process of the embryos and the selection
of the healthiest one for embryo transfer.  With the advent of
machine learning applications in various domains, the field of
embryology has had its impact too.

One  of  the  known  methods  of  automating  the  grading
process  by  introducing  deep  learning  was  with  the  use  of
Convolutional Neural Networks, which are extremely powerful
neural networks, especially for dealing with images. The work
cited in the paper by Chen et al. [7]. has implemented a deep
learning technique on a large dataset of microscopic images. A
Convolutional neural network has been applied to the dataset,
and  a  ResNet50  architecture  has  been  used  to  tune  the
parameters. The labeling of the embryo images has been done
using  Gardner‘s  grading  system,  which  is  one  of  the  many
well-known  methods  for  grading  embryos.  The  blastocyst
development,  ICM  quality,  and  TE  quality  were  the  focal
points  of  analysis  and  the  results  indicated  an  accuracy  of
75.36% for the automated grading of the dataset.

A  similar  CNN based  methodology  was  proposed  in  the
paper [11] for embryo selection and classification. As per the
previous  discussion,  Gardner‘s  grading  standards  [12]  were
adopted  here  too  for  the  labels  of  the  dataset.  Accuracy,
sensitivity,  and  specificity  are  the  3  evaluation  criteria
considered and the results obtained by the method are 78.14%,
87.0%, and 68.82% respectively, for the three criteria. Besides
the low results, the research consists of some other limitations
too.  The image analysis  done is  only  favorable  for  static  2D
images.  They  have  concluded  that  developing  a  model  with
considerations  of  the  temporal  development  of  the  embryo
using  a  time-lapse  video  dataset  can  provide  much  better
results.

A different kind of approach was adopted in the paper [13].
The developed method was named STORK and it makes use of
Deep Neural Networks to perform automatic embryo grading
for the selection of the highest quality of embryos. Veeck and
Zaninovic  grading  method  [14]  was  followed.  The  novel
feature  of  STORK  is  that  instead  of  focusing  on  the

predetermined features only, it analyzes the entire image of the
embryo.  Hence CNN is  given the power to analyze all  those
features  which  were  not  being  assessed  or  not  considered
important  earlier.  The  dataset  consists  of  50,000  time-lapse
images of human embryos. The STORK framework, based on
Google’s Inception model has been used for blastocyst quality
prediction.  A  collection  of  2182  embryos  have  been  used  to
generate a decision tree using a CHAID algorithm that relates
the  embryo  quality  with  the  patient’s  age.  The  accuracy
obtained  was  97.53%.  Another  Region-based  CNN  based
approach  proposed  in  [15]  took  into  account  the  position
change  of  the  cells  with  the  help  of  the  Kalman  Filter.  To
correlate the changes in cells in the video frames a Hungarian
algorithm  was  used.  The  proposed  model  can  track  up  to  4
cells. Adding to the list, another study done in the paper [16]
makes use of cloud computing. Microsoft Azure APIs are used
for the classification of the IVF images. The proposed model
achieved a recall rate of 89.2% and a precision of 85.7%.

Looking at the recent advances in the research in this field,
it is evident that interpretation of the quality of the embryos is
very complicated, and giving any assignments based on visual
morphology without considering the time stamp or the analysis
of the temporal information is just a conjecture. The theory has
been proved by analyzing the embryos at different times of the
same day and obtains non-obvious results due to their dynamic
nature. Analyzing the embryos multiple times on the same day
again brings in other issues like the sudden shoot in time spent
by the embryologists. There is also an increased risk added due
to the removal of embryos from the incubator for analysis in
the absence of time-lapse microscopy. Time-lapse microscopy
was  introduced  to  serve  the  purpose  of  enabling  the
embryologists  to  leverage  the  temporal  information  with
eliminated  risks.  But  the  time  consumption  in  analyzing
multiple  samples  of  this  5-6  day  process  of  thousands  of
patients  is  quite  impractical.

The  latest  algorithms  have  effectively  utilized  the  data
from time-lapse  microscopy for  automating the  process.  The
algorithms  focus  on  the  multiple  events  in  the  development
cycle  of  the  embryo,  along  with  their  timestamps.  A  similar
approach is discussed in the paper [17]. They have made use of
the  time-lapse  imaging  for  grading  the  morphological
appearance of human blastocysts with the implementation of
CNN as well as RNN. CNN predicts inner cell mass (ICM) and
trophectoderm  (TE)  grades  from  a  single  image  frame,  and
then  RNN takes  into  account  the  temporal  information  from
multiple image frames. The accuracy result for ICM grading is
65.2%  and  69.6%  for  TE.  There  was  an  improvement  in
accuracy  as  ICM 7.2%;  TE 5.1% as  compared  to  the  results
obtained from the CNN model on static images.

In  this  paper,  we  have  proposed  a  methodology  that
provides a fully automated time-series grading of the embryos
along with higher accuracy for the grading and detection of the
most viable embryo for transfer.

3. DATASET DETAILS AND PREPROCESSING

The  required  dataset  was  obtained  from  Nova  IVF
Fertility,  Ahmedabad  [9].  The  hospital  provided  the  video
dataset  of  multiple  patients  with  multiple  samples  from  the
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embryoscope.  We  received  data  of  60  patients  with  10-30
samples  each.  Hence  a  total  of  803  labeled  samples  were
obtained  from  the  hospital.  Since  each  patient  had  multiple
samples,  the  video  dataset  of  individual  patients  was  in  the
form of a grid of 3x4 if the patients had more than 9 samples
and 3x3 otherwise. Fig. (4) shows the image frame extracted

from the video dataset of a patient with 12 samples arranged in
a 3x4 grid, and Fig. (5) shows the dataset of a patient with 9
samples  arranged  in  3x3  grids.  Each  patient  had  multiple
samples,  so  each  sample  of  each  patient  was  extracted
separately  as  well.

Fig. (4). 12 samples of a particular patient in a 3x4 grid.

Fig. (5). 9 samples of a particular patient in a 3x3 grid.
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Fig. (6). shows an example of the image frames for Day 1, 2, 3, and 5, extracted from a particular sample of a particular patient from the grid-like
dataset.

The video footage captures the entire development process
from day 1 till day 5 or 6. The video of this days-long process
was compressed to 2-3 minutes, and frames were captured at
fixed intervals in terms of HPI.

Day  1:  Image  frames  extracted  in  the  interval  of  16
HPI  to  19  HPI  as  shown  in  Fig.  (6a  and  6b),
respectively
Day  2:  Image  frames  extracted  in  the  interval  of  44
HPI  to  47  HPI  as  shown  in  Fig.  (6c  and  6d)
respectively
Day  3:  Image  frames  extracted  in  the  interval  of  67
HPI  to  71  HPI  as  shown  in  Fig.  (6e  and  6f)

respectively
Day 5: Image frames extracted in the interval of 112
HPI  to  115  HPI  as  shown  in  Fig.  (6g  and  6h)
respectively.

These frames correspond to images from day 1 to day 5 of
individual samples of individual patients. 5458 image frames
were extracted in total, which comprised all the image frames
of days 1, 2, 3, and 5 of all 803 samples. The extracted images
were  of  the  size  of  250x250  pixels.  The  image  extraction  is
essential  as  the  first  step  of  the  data  processing  which  will
serve as an input to our LSTM- CNN model. The images were
further  cropped  to  197x200  pixels  for  extracting  the  area  of
interest.
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Fig. (7). Flowchart demonstrating the design of our model.

4. PROPOSED METHOD

The  dynamic  nature  of  the  embryos  over  even  short
periods highlights the importance of temporal information and
makes the use of time series prediction inevitable. By linking
time  stamps  to  the  dynamicity  of  the  embryo,  we  can  keep
track  of  the  process  and  evaluate  the  sequential  growth
accordingly.  Considering  these  important  factors  our  model
rightly  makes  use  of  time  series  prediction  with  the  help  of
Long Short Term Memory (LSTM), which is a special kind of
Recurrent  Neural  Network  (RNN)  favored  for  dealing  with
sequential data. The basic flow of the proposed and developed
model is as shown in Fig. (7).

The  embryoscopic  time-lapse  videos  of  the  development
process  are  recorded  and  image  frames  at  fixed  HPI  are
obtained which can be fed to Convolutional  Neural  Network
(CNN) for  image feature extraction.  These image features in
sequential order are fed to Long Short Term Memory (LSTM)
and based on the time stamps, the final grading is performed.
Based on the final grades, the most viable embryo is selected
for embryo transfer in the prospective mother’s womb leading
to a successful pregnancy. The proposed methodology will be
discussed in detail in further subsections.

4.1. Image Feature extraction using CNN

Convolutional  Neural  Network  (CNN)  is  proficiently
known  for  its  high  accuracy  in  image  recognition  and
classification. As a part of computer vision, Transfer learning
[18] is one of the very efficient and time-saving methods while
developing  our  model.  Through  Transfer  Learning,  you  can
directly make use of already developed models that are trained
with  high  accuracies  on  huge  datasets.  These  models  are
known  as  Pre-Trained  models.  They  can  be  readily  used
without the need to develop the entire CNN architecture. They
provide high accuracy along with saving a lot of time. We have
chosen  various  available  pre-trained  models  and  used  them
along with LSTM in our model.

The  cropped  image  frames  of  size  (197x200x3)  serve  as
the  input  to  the  Pre-trained  CNN  model,  which  extracts
features from the image frames. The output shape of the model

is (6x6x512). 512 is the number of features extracted from the
images.

4.2. Time Series prediction using LSTM

As mentioned in Section 1, time series prediction plays a
significant  role  in  determining  the  grades  of  the  embryos.
LSTM  plays  an  important  role  in  extracting  input  patterns
when the input extends over long sequences. Since the gated
architecture  of  LSTM  is  capable  of  manipulating  memory
states, they are suitable for such problems. It remembers every
bit  of  information  through  time  and  is  hence,  useful  in  time
series prediction due to its ability to remember previous inputs
[19].

After  having  extracted  the  features  using  the  Pre-trained
CNN  model,  the  image  features  arranged  in  a  sequence  are
further  fed  to  the  LSTM  layer  for  leveraging  the  temporal
information. The features are arranged in a sequence of images
from  day  2,  day  3  till  day  5.  The  output  of  the  pre-trained
model  must  be  passed  through  a  flatten  layer,  as  well  as  a,
reshape  layer  before  serving  as  an  input  to  the  LSTM layer.
The LSTM input shape is 3 dimensional, with the dimensions
being the batch size, time steps, and the input units. In our case,
the time steps are 3 correspondings to day 2, day 3, and day 5
images in the sequence and the input units are the number of
features  obtained  from  the  pre-trained  model.  The  input  of
shape (None, 3, 18432) obtained after the flatten and reshape
layers is fed to the LSTM layer. The output of the LSTM layers
is  of  the  shape  (None,  128),  which  is  then  passed  through  2
dense layers. The final layers with the output shape of 5 imply
the  5  possible  outcomes  of  the  grading  ranging  from 0  to  4.
The final output is the predicted grade based on the sequence
of embryo growth fed to the LSTM layer. LSTM processes this
temporal information and predicts the grading of the embryo.

4.3. Loss Function

Cross  entropy  is  the  loss  function  used  for  multi-class
classification  problems  and  is  based  on  the  concept  of
maximum likelihood. In cross-entropy, the difference between
the  predicted  and  actual  probabilities  is  averaged  and  the
probability distribution is summarized to minimize the score to
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the ideal value of cross entropy which is 0.

The loss functions ‘Categorical cross-entropy’ as well  as
‘Sparse  categorical  cross  entropy’  is  commonly  used.
Categorical  cross-entropy  requires  one-hot  encoding  of  the
labels.  For  our  model,  we  have  chosen  ‘Sparse  categorical
cross entropy’ loss function [20] to rule out the requirement of
one hot encoding of our labels.

5. RESULTS

The LSTM-CNN model was trained on a GPU as per the
following experimental setup details:

Train-Validation split: 80% - 20%
Batch Size: 8
Optimizer: Adam
Learning rate: 0.0001
Loss Function: Sparse categorical Cross entropy
RAM requirements: 25 Gb

Various Pretrained CNN models were implemented on the
embryo image dataset,  and their performance was compared.
The parameters batch size and the ratio of training to validation
data were made to vary for the performance analysis. Of these
models,  the  best  one  was  selected  and  implemented  on  the
dataset  along  with  LSTM,  and  very  promising  results  were
obtained,  proving  the  capability  of  LSTM  in  time  series
prediction.

5.1. Model Specifications

The model was trained using numerous pre-trained models
like  VGG19  [21],  Xception  [22],  MobileNet  [23],
DenseNet121  [24]  and  Inception  [25].  We  also  trained  the
model using GRU, which is also used for time series prediction

like  LSTM  [26].  As  the  name  suggests,  these  models  are
already  trained  and  they  provide  a  very  high  accuracy  when
used with a  large amount  of  image data.  Since all  these pre-
trained models are favorable while dealing with images, almost
all the models have given 100 percent accuracy.

Table  2  indicates  that  the  model  was  also  trained  by
varying  the  various  parameters  like  batch  size  and  train  –
validation split ratio. The batch size of 8 was found to give the
best  performance  and  the  best  accuracy  was  provided  by
VGG16  [27].

Based  on  the  promising  results  given  by  VGG16,  we
decided  to  focus  on  it  for  further  study.  The  VGG16-LSTM
model and an accuracy of 100% was obtained for both training
and validation dataset. The train-validation split was 80-20 in
this case and the steps per epoch were also set accordingly. The
batch  size  was  kept  as  8.  The  graphs  of  accuracy  and  loss
obtained after running the VGG16-LSTM model are shown in
Figs. (8a and 8b), respectively.

Like  LSTM,  GRU (Gated  Recurrent  Unit)  [26]  is  also  a
well-known  model  for  time  series  prediction.  In  contrast  to
LSTM,  which  has  three  gates  namely  the  input  gate,  forget
gate,  and the output  gate,  GRU has two gates,  which are the
reset gate and the update gate. LSTM is preferred while dealing
with  large  data  and  when  there  is  a  requirement  of  high
accuracy. On the other hand, GRU is generally preferred when
the data is less and accuracy is of less importance.

The  model  achieved  satisfactory  accuracy  within  15
epochs.  Fig.  (9)  indicates  the  distribution  for  different  batch
sizes and fixed train to the validation data ratio of 70-30. Fig.
(10) ultimately shows the Training and Validation accuracy of
different  CNN  pre-trained  models  with  LSTM.  Table  2
presents the accuracy of the models under different values of
batch size and train to validation data ratio.

Fig. (8). Results of VGG16-LSTM model with the train to validation data ratio of 80-20 and batch size of 8 (a) Accuracy (b) Loss.
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Fig. (9). Histogram of Training and Validation accuracy of VGG16 architecture obtained by varying the batch size for the fixed train to validation
data ratio of 70% - 30%.

Fig. (10). Training and validation accuracy of different CNN pre-trained models with LSTM.

Table 2. Comparison of different models for the automatic grading process.

Model Train-Validation split (%) Batch Size Training Accuracy (%) Validation Accuracy (%)
VGG16-LSTM 80-20 10 100 100
VGG16-LSTM 80-20 8 100 100
VGG19-LSTM 80-20 10 100 100
Xception-LSTM 80-20 10 100 99.7
Inception-LSTM 70-30 10 99 98.8

MobileNetV2-LSTM 70-30 10 100 100
DenseNet121-LSTM 80-20 8 99.2 99.9

VGG16-GRU 80-20 8 100 100

100% 100% 100% 100% 100% 

99.90% 

100% 

99.90% 

4 8 20

Training accuracy Validation accuracy

10
Batch Size 

A
c
c
u

r
a
c
y
 i

n
 %

 

100% 100% 100% 

99% 

100% 
99.92% 

100% 100% 100% 

99.70% 

98.80% 

100% 
99.90% 

100% 

VGG16 VGG19 XCEPTION MOBILENETV2 DenseNet121 VGG16-GRU

Training accuracy Validation accuracy

INCEPTION

Pretrained CNN models 

A
c
c
u

r
a
c
y
 i

n
 %

 



Time Series Prediction of Viable Embryo and Automatic The Open Biomedical Engineering Journal, 2021, Volume 15   199

Fig. (11). Confusion matrix depicting the results obtained after model implementation on test data.

Table 3. Testing results.

Sample
Patient 1 Patient 2 Patient 3

LSTM Model Grades Manual Srades LSTM Model Grades Manual Grades LSTM Model Grades Manual Grades
1 4 4 4 4 4 4
2 4 4 2 2 2 4
3 4 4 4 4 2 2
4 4 4 4 4 4 1
5 4 4 4 4 4 4
6 4 2 4 4 4 4
7 3 3 4 4 4 4
8 4 4 2 2 4 4
9 3 4 4 4 4 4
10 4 4 4 4 4 4

5.2. Test Results

The  model  was  tested  on  the  dataset  of  three  patients
having  10  samples  each.  Table  3  shows  the  results  after  the
model was implemented on the test data. The grades predicted
by  the  model  have  been  compared  with  the  grades  given
manually by the embryologists. The model predicts grades of
26  samples  correctly  out  of  30  samples,  thus  providing
accuracy  close  to  the  human  level.

Amongst the multiple samples collected from the patients
for selecting the best embryo, a majority of the samples turned
out to be non-viable, as expected, which is indicated as grade 4
as per our grading scheme. The confusion matrix [28] as shown
in  Fig.  (11),  supports  this  fact  by  indicating  the  maximum
diagonal  entry  for  grade  4  and  the  model  has  predicted  it
accurately  too.  The  non-diagonal  entries  indicate  that  there
have  been  4  instances  where  a  grading  mismatch  is
encountered. However, this is a result of certain anomalies in
the video dataset, which needs to be taken care of while dealing
with the dataset to make the model more robust.

The video should be recorded until the instance when it has

to be taken out of the incubator. If the video could not capture
the  final  blastocyst  then  one  sort  of  anomaly  can  occur.
Various such anomalies can be avoided if we ensure that our
time-lapse video dataset  is  complete as a whole which is  the
basic and the essential requirement.

5.3. Loss Function

To  evaluate  the  performance  of  the  cross-entropy  loss
function, its performance was compared with three other loss
functions. Table 4 lists out the results obtained when the model
is  trained  using  different  loss  functions.  Mean  Square  Error
(MSE) [29] and Poisson [30] are the most commonly used loss
function  for  regression  models.  Whereas  Categorical  Hinge
[31]  and  Sparse  Categorical  Cross  entropy  [32]  are  loss
functions  used  for  multi-class  classification  problems.  The
suggested cross-entropy loss function provides the best results.
As mentioned in Section 3.2, Sparse Categorical cross entropy
does not require one-hot encoding of labels [33]. Hence, it also
performs better in terms of memory usage since it makes use of
a single integer for a class, rather than the whole vector. Fig.
(12) gives a visual overview of the results so obtained.
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Fig. (12). Training and validation loss obtained using different loss functions.

5.4. Optimizers

Various optimizers were implemented and a comparison of
the  results  in  terms  of  the  training  and  validation  loss  was
obtained  as  shown  in  Table  5.  Fig.  (13)  correspondingly
indicates  the  comparison  graphically.

As  seen  in  Fig.  (13),  Adam  [34]  optimizer  performs  the
best, providing a significantly reduced loss as compared to the
other three optimizers, which are - AdaDelta [35], Stochastic
Gradient  Descent  (SGD)  [36],  and  AdaGrad  [37].  As
theoretical support, Adam is the most widely used optimizer. It

combines  the  benefits  of  Stochastic  Gradient  Descent  and
AdaGrad.

5.5. Timing

The proposed method was tested using a CPU as well as a
GPU  as  the  hardware  accelerator.  Table  6  lists  the  total
execution time taken by the proposed CNN - LSTM model to
predict the grades. GPU performs the entire process in just 8
seconds  which  is  very  remarkable  as  compared  to  the  days-
long manual morphokinetics performed till date for the same.

Table 4. Comparison of model performance using different loss functions.

Loss Function Training Accuracy Validation Accuracy Training Loss Validation Loss
MSE 20.83% 46.40% 10.78 11.32

Poisson 23.30% 32.90% 5.40 5.48
Categorical Hinge 40.50% 65.80% 0.46 0.68

Sparse Categorical Cross entropy 100.00% 100.00% 0.01 0.02

Table 5. Comparison of model performance using different optimizers.

Optimizer Training Accuracy Validation Accuracy Training Loss Validation Loss
AdaDelta 67.50% 70.30% 0.97 0.92

SGD 67.10% 70.40% 0.95 0.89
AdaGrad 74.48% 76.40% 0.67 0.66

Adam 100.00% 100.00% 0.01 0.02
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Table 6. Time taken by a CPU and a GPU for the automatic grading.

Platform Total Time (sec)
CPU 240
GPU 8

Fig. (13). Training and validation loss obtained using different optimizers.

Fig. (14). Embryo sample images of the second sample of patient 2 at various HPI.
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6. DISCUSSION

The  above  results  suggest  that  the  proposed  model  can
predict  embryo  grades  with  acceptable  accuracy.  The  model
can  provide  steady  results,  and  thus  avoiding  observer
variances. The model is fully automated and does not require
any manual processing of embryo images before prediction. As
indicated  in  Table  2,  VGG-16  [27]  provides  one  of  the  best
training  and  validation  accuracies  when  used  along  with  the
LSTM  layers.  Moreover,  a  train  to  test  split  of  80  to  20,
keeping  a  batch  size  of  8,  was  found  to  be  most  efficient  in
obtaining  accurate  results.  Our  model  makes  use  of  the  loss
function  Sparse  Categorical  cross  entropy  [20].  Table  4
indicates that this loss function provides a 100% training and
validation accuracy with negligible loss. As per Table 5, Adam
optimizer [34] proves to be the best, providing 100% accuracy.

To  justify  the  accurate  grading,  we  have  selected  the
sample images of the second sample of patient 2 as indicated in
Fig.  (14).  Fig.  (14)  indicate  the  embryo samples  observed at
46.8,  71,  112.2,  and  115  HPI  respectively.  The  embryo
development  stages  on  days  corresponding  to  these  HPIs
appear very promising. This particular embryo sample has been
considered  viable  by  the  embryologist  and  grade  2  has  been
assigned  to  this  sample.  Our  LSTM-CNN  model  has  given
similar results.

The 4 misclassified samples are marked in bold in Table 3.
While analyzing the discrepancy in the misclassified samples,
the  6th  sample  of  patient  1  has  been  assigned  grade  2  by  the
embryologist.  However,  on  verifying,  it  was  found  that  for
sample  6,  the  blastocyst  stage  has  not  been  captured  in  the
time-lapse video. Hence, due to the absence of day 5 images, a
discrepancy occurred and grade  4  is  assigned.  In  the  case  of
patient 3, a visual analysis of samples 2 and 3 indicate that they
are  undergoing  the  same  stages  of  development  until  the
blastocyst stage. So their grades should be the same, which the
model is predicting correctly. For the same patient, sample 4
does  not  reach  the  blastocyst  stage  until  the  end,  and  so  the
model predicts grade 4. Hence we have justification from the
video  data  set  for  all  the  samples  where  there  is  a  grading
mismatch, as discussed in detail in the previous section.

CONCLUSION

The  project  has  developed  a  fully  automated  grading
system for embryos in IVF along with achieving high accuracy
of 100 percent using the time-lapse images of the development
of  the  embryo  in  the  incubators.  The  method  uses  neural
networks for analyzing the time series information along with
the information of the image features and predicts the grades
for  the  embryo  after  blastocyst.  Morphokinetics  for  Embryo
grading  can  be  efficiently  automated  and  the  prediction  of
viable embryos can be made simpler, faster, and more accurate
as  compared  to  the  manually  performed  morphokinetics  at
present.  The  comparison  of  various  other  pre-trained  CNN
models was also made from which VGG16, VGG19, Xception,
and  MobileNET  gave  promising  results  and  100  percent
accuracy  as  well.  A  VGG16-GRU  model  was  also
implemented, resulting in 100 percent accuracy. For a complete
analysis, various optimizers and loss functions were compared.
Adam  optimizer  and  Sparse  categorical  cross-entropy  loss

function were proved to be ideal for our model. The total time
taken  for  the  final  grading  of  the  embryo  using  a  CPU  and
GPU were compared. With the help of a GPU, the days long
grading process could be completed within just 8 seconds.

Results  have  proved  that  the  usage  of  time-lapse  images
for  analyzing  the  temporal  information  gives  much  better
results  as  compared  to  single  image  evaluation.  Time  series
analysis  using  LSTM  has  proved  to  give  very  promising
results. The proposed CNN-LSTM model is fit to be deployed
in  the  busy  environment  of  the  IVF  labs  and  automate  the
highly  subjective  manual  process.  Further,  after  the  GUI
development,  hospitals  can easily  use this  model  for  a  faster
and more accurate grading system.
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CNN = Convolutional Neural Network
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ICM = Inner Cell Mass

IVF = In Vitro Fertilization

LSTM = Long Short Term Memory

VGG = Visual Geometry Group
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