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Abstract:

Recently, significant research has been done in Super-Resolution (SR) methods for augmenting the spatial resolution of the Magnetic Resonance
(MR) images, which aids the physician in improved disease diagnoses. Single SR methods have drawbacks; they fail to capture self-similarity in
non-local patches and are not robust to noise. To exploit the non-local self-similarity and intrinsic sparsity in MR images, this paper proposes the
use of Cluster-Sparse Assisted Super-Resolution. This SR method effectively captures similarity in non-locally positioned patches by training on
clusters of patches using a self-adaptive dictionary. This method of training also leads to better edge and texture detection. Experiments show that
using Cluster-Sparse Assisted Super-Resolution for brain MR images results in enhanced detection of lesions leading to better diagnosis.

Keywords:  Cluster-sparse  assisted  super-resolution,  Magnetic  resonance  imaging,  Tumor  detection,  Medical  imaging,  Positron  emission
tomography, Computed tomography.

Article History Received: September 07, 2020 Revised: April 2, 2021 Accepted: April 5, 2021

1. INTRODUCTION

Medical imaging is a safe and reliable method for disease
detection  and  diagnosis.  There  are  various  medical  imaging
techniques  employed  in  clinical  practice  like  Computed
Tomography  (CT),  Positron  Emission  Tomography  (PET),
Magnetic  Resonance  Imaging  (MRI)  to  name  a  few.  These
techniques  provide  various  functional  and  anatomical
information  and  that  too  at  varied  temporal  and  spatial
resolutions  [1].  A  high-resolution  medical  image  is  a  key  to
better medical research or diagnosis and treatment

However,  due  to  physical  and  hardware  constraints,  the
images produced by the above-mentioned imaging techniques
are  of  low  resolution  and  are  noisy;  this  negatively  affects
medical  research  and  diagnosis  [2].  Improving  the  imaging
hardware to  get  better  quality  images  is  expensive and not  a
viable option.A potential solution is to use the Low Resolution
(LR) image produced by the imaging techniques and produce a
High-Resolution  (HR)  image  using  appropriate  techniques.
This  HR  image  can  lead   to  an   accurate  image   analysis
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giving a better clinical diagnosis. SR is an appealing method
which does exactly the same; it takes an LR image and yields
an HR image. However, the undetermined nature of SR makes
it  a  challenging problem to solve [3].  A huge amount of  HR
images,  when  decimated,  produce  LR  images,  this  makes  it
difficult  to  restore  accurate  details  from  the  LR  image,
moreover,  most  SR  methods  are  a  convex  optimization
problem  and  it  is  cumbersome  to  balance  the  regularization
terms  while  simultaneously  yielding  high-resolution  images
[4]. Contrary to traditional methods, which uses just a single
LR  image,  Liang  et  al.  [5],  used  a  sequence  of  images,
assuming  that  there  were  no  changes  in  imaging  conditions
(focal length, lighting, etc.) [6]. However, that is not the case
and the performance of the SR method is affected by changes
in imaging conditions in each image of the sequence. Using the
process  of  SR,  an  HR  image  can  be  obtained  from  an  LR
image.  However,  this  method  assumes  that  the  previous
knowledge  of  restoration  is  known i.e.  the  impulse  response
(point spread function) of the system is known. Moreover, in
the  majority  of  the  cases,  this  point  spread  function  is  not
known. Current research has made some improvements in the
usage  of  this  method  but  these  improvements  are  not  very
significant and the applications are still limited.
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Jeong et al. used a fuzzy system in SR image estimation.
The PSF (Point Spread Function) was assumed to be a circle
and  for  the  degeneration  matrix,  a  cyclic  square  matrix  was
employed  [7].  In  a  study  by  Alqadah  et  al.,  Linear  Spatial
Invariant  (LSI)  was  used  to  deal  with  PSF  and  Gaussian
Quadratic  Criterion  and  Lanczos  algorithm  was  used  to
approximate the values of the fuzzy parameters [8]. Herment et
al. pioneered SR in MRIs, and the images were reconstructed
using k space data with the help of 3-D MRI volumes [9, 10].
However, the lack of isotropic resolution leads to poor results
for brain MRI. Peeled and Yeshurun applied IBP algorithm for
SR  and  used  LR  diffusion  tensor  images  for  MRI  [11].
Scheffler  negated  this  result  [12]  and  Greenspan  further
verified it using 2-D multi-slice MRI scans and applied SR on
them [13]. SR was used on functional MRI data by Peeters et
al. [14]. In a functional MRI, the temporal activity is visible.
An additive model was used to compute the shared space from
the pixel of LR and HR image

Carmi et al. further explored the application of SR in MRI
data  by  using  a  novel  sampling  condition  [15].  They  used
uniform spatial  shifts  and  equal  sampling  in  LR  images  and
with this, they managed to propagate the global spatial errors in
the SR reconstructed HR image. Bai et al. further improved the
resolution  of  MRI  brain  images  by  using  combinations  of
orthogonal scans of the same subject [16], the MAP function
devised by Hardie et al. was used for this purpose [17]. For SR
reconstruction,  nearest  neighbours  and  interpolation-based
methods  like  linear  interpolation  can  also  be  used  [18,  19].
However,  it  becomes  difficult  to  preserve  edge  and  texture
when  using  this  method  thus  leading  to  blurred  edges  and
textures.  Lu  et  al.  explored  learning-based  methods  for  SR
reconstruction  of  MRI  images  [20,  21].  Using  the  HR  T-1
weighted  image,  the  intra-patient  information  is  extracted
which  is  used  to  guide  the  SR  process.  Further,  an  LR  T-2
weighted image can be constructed by using an extension of
the  previously  mentioned  method  along  with  dictionary
learning  and  a  sparse  representation

1.1. Key Contributions of this Research

MRI is a non-invasive imaging technology used for disease
detection and treatment monitoring [20]. Even though imaging
technology  is  sophisticated,  the  various  processes  the  image
undergoes,  like  transmission  and  storage  tend  to  introduce
noise  in  the  image.  This  leads  to  a  loss  in  the  quality  of  the
image  which  means  loss  of  crucial  medical  information
resulting in poor diagnosis. Super-resolution is a method which
can produce an HR image from its corresponding LR image. In
recent  years  there  has  been  significant  research  into  SR
methods  for  MR  image-based  diagnosis.  However,  there  are
still  some  problems  with  single  super-resolution  techniques.
Such  techniques  are  not  robust  to  noise  since  they  fail  to
perform  de-noising  and  SR  simultaneously,  moreover,  such
techniques  also  assume  that  an  LR  image  is  obtained  by
decimating its corresponding HR image. This paper focuses on
cluster-sparse assisted super-resolution technique (CSR), which
can overcome the drawback of single SR techniques and other
restoration dependent techniques. The key features of CSR are
that  it  is  robust  to  noise  and  exploits  non-locally  positioned
similar  patches.  CSR  also  leads  to  better  edge  and  texture

detection  because  the  dictionary  employed  by  the  method  is
trained on a cluster of patches instead of a single patch, also the
dictionary being used is not a general dictionary, instead, and a
self-adaptive  dictionary  is  being  used.  All  these  features
together offer enhanced detection of lesions leading to better
diagnosis [22 - 25].

2. RELATED WORK

Many recent approaches have been proposed in the domain
of automatic diagnosis of brain tumor detection via MRI using
machine  learning and computer  vision.  Jose  et  al.  [26]  work
was one of the first articles which analysed and showed how
super  resolution  could  affect  the  detection  of  tumor  in  MRI.
They  tried  to  highlight  that  in  MRI  typical  clinical  settings,
both  low-  and  high-resolution  images  of  different  types  are
routinely  acquired,  out  of  which  we  can  leverage  the  low
resolution  imaging  by  using  super  resolution  imaging
techniques.  The  method  suggested  reconstructing  high
resolution  images  from  the  low  resolution  images  using
information  from  coplanar  high  resolution  images  acquired
from  the  same  subject.  A  work  by  Plenge  et  al.  [27]  also
performed  a  prodigious  study  on  the  trade-off  between
resolution,  signal-to-noise  ratio  and  acquisition  time.
Qualitative  experiments  were  performed,  in  which  they  took
images of three different subjects using MRI, and the results
showed  that  super-resolution  reconstruction  was  indeed
improving the resolution, signal-to-noise ratio and acquisition
time  trade-offs  compared  with  direct  high  resolution
acquisition. Francois et al. [28] established a supervised patch
based image reconstruction technique for to brain MRI super-
resolution.  They  considered  a  supervised  regularization
technique that was driven by the similarities between the input
image  and  learning  data-set.  The  similarities  were  computed
using  patch  based  approach  and  were  defined  at  the  voxel
scale.

Similar method was devised by Ali et al. [29], where they
used a similar super resolution process, for developing a novel
technique,  which  enabled  the  reconstruction  of  a  volumetric
image  from  multiple-scan  slice  acquisitions.  The  technique
tries  to  generate  a  super  resolution  of  the  Fetal  Brain  MRI
volumetric  scan.  Yun-Heng et  al.  [30]  were  the  first  ones  to
develop  and  propose  a  sparse  representation-based  super
resolution  reconstruction  for  MRI.  Their  framework  as
presented  was  mainly  built  for  the  reasons  to  solve  the  data
collection  limitations.  They  proposed  a  novel  dictionary
training  method  through  sparse  reconstruction  for  enhancing
the  similarity  between  the  sparse  representations  of  low  and
high  resolution  MRI  block  pairs  by  simultaneously  training
both  the  dictionaries.  They  proposed  a  new  set  of  sparse
representation coefficients, which were used to generate high
resolution MRI blocks from the low resolution MRI blocks.

For  recent  studies,  few  deep  learning  based  techniques
have  also  been  proposed  towards  this  goal.  Since,  neural
networks  have  shown  us  how  they  work  better  and  perform
better in accuracy. Chi-Hieu et al. [31], had established a novel
deep 3-D convolutional  network  based  architecture  for  brain
MRI super-resolution. They had taken the 3-D approach using
the  normal  super-resolution  via  neural  networks  where  they
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generate high resolution images from its input low-resolution
with help of patches of other HR brain images. Of course, deep
learning  techniques  have  come  up  in  recent  times  and  they
outperform classical approaches, but they have few drawbacks
such as heavy data requirements, a lot of resource requirements
such as high end graphics processors and a lot of time required
for training, which sometimes takes many days.

A patch based SR framework which utilizes Fourier Burst
Accumulation  to  form  the  HR  image  from  LR  patches  was
presented by Jog et al. [32]. The usage of conjugated gradient
method and a linear system was devised as a method to acquire
HR  image  from  LR  image  by  Poot  et  al.  [33].  A  two-stage
algorithm for MRI SR was explored. According to Ongie et al.
[34],  an  edge  mask  was  obtained  in  the  first  stage,  and  this
mask which represents the edges of the image was used as an
image  prior  to  the  second  stage.  The  use  of  Tikhonov
regularization  for  MRI  SR  in  slice-select  direction  was
explored by Zhang et al. in [35]. The Property of self-similarity
that  is  intrinsically  present  in  MRI  was  utilized  along  with
image  priors  by  Manjon  et  al.  in  [36].  Iterative  motion
correction and HR image estimation was explored for HR fetal
brain MRI by Rousseau et al. [37].

SR algorithms which involve sparse coding comprise the
use  of  dictionaries,  and  it  is  a  key  area  of  research,  in  these
algorithms the efficiency of learning were improved by using
these dictionaries. Yang et al. [38] established a method for SR
using  clustered  sparse  encoding  and  learned  geometric
dictionaries for super-resolution of LR images. Zheng et al. in
[39] presented an approach to SR where multiple dictionaries
were deployed. Also, a novel dictionary selection method was
presented  in  this  work.  These  dictionaries  were  then  used  to
generate sparse representation of LR images which was then
used  to  reconstruct  the  HR  image.  The  concept  of  sparse
coding  noise  was  introduced  in  [40]  by  Dong  et  al.,  in  this
method  for  SR,  the  objective  of  restoring  the  image  was
defined as suppressing the sparse coding noise. A SR method
which preserves image edges was presented in [41] by Huang
et  al.,  this  edge  preserving  smoothing  was  accomplished  by
using  EPS  regularization  term.  A  hierarchical  and  sparse
representation for SR image was devised by Liu et al. in [42].
They combined both clustering and collaboration to code the
image. Clustering was used to cluster the feature space of an
image  into  multiple  LR feature.  Collaborative  representation
was used to map the LR feature subspace to the HR subspace.
Another clustering based method for SR was presented by Han
et  al.  in  [43];  here  the  optimal  representation  problem  was
solved using jointly-low rank and sparse regularization for each
subspace.

In  multi-dictionary  learning,  an  important  task  was  to
choose the correct dictionary, for this Wei et al. presented the
random forest technique, to learn the most suitable dictionary
for each patch [44]. A sparse neighbour encoding and a sparse
neighbour selection scheme was presented by Gao et al. [45].
A  directionally  structured  coupled  dictionary  learning  was
established  by  Ahmed  et  al.  [46],  whereas  a  semi-coupled
dictionary learning for SR was presented by Wang et al. [47].
In  both  cases,  a  pair  of  dictionaries  and  mapping  functions
were  deployed.  Sivakumar  et  al.  presented  a  method  for

denoising  of  MRI  using  curvelet  transform  [20].

However,  there  exists  an  insufficient  amount  of  work
towards using modified sparse representation techniques in the
domain  of  brain  tumor  detection  in  MRI.  To  the  best  of  our
understanding, this is the first work to report a cluster-sparse
representation based solution for diagnosing the tumor in MRI.

3. MATERIALS AND METHODS

There has been a lot of research and attempts at restoring a
high-resolution  image  (x)  from  its  degraded  low-resolution
image (y). This can be mathematically expressed as

(1)

The  images  x  and  y  are  represented  using  lexicographic
matrices, the degradation operator is H and the Gaussian white
noise is represented by k. The value of H determines the type
of  image  restoration.  This  scenario  is  expressed  as  a
minimization  problem.

(2)

The  l2  fidelity  is   and  the  regularization
parameter for image prior is β(x).

Traditional  models  assume that  except  for  the edges,  the
image is locally smooth. This assumption leads to inaccurate
restoration  resulting  in  the  loss  of  finer  details  in  the
reconstructed  image.  Previous  research  has  indicated  that
natural images intrinsically have the property of sparsity. This
fact can be utilized to represent images using sparse models. In
such models, a small sample of elements can be used from a
basis  set  stored  in  a  dictionary.  Previously  models  used
wavelets  and  bandlets  which  are  traditional  dictionary  sets;
however,  using  a  learned  dictionary  can  yield  better  results.
Moreover, these traditional models fail to exploit the similarity
that  exists  between  non-local  patches.  Some  methods  use
weighted  graphs  to  identify  textures  and  other  high-level
patterns, however, inaccurate weights can lead to loss of details
in the reconstructed image.

This  research  paper  introduces  Cluster-Sparse  assisted
Super  Resolution  technique  (CSR),  a  superior  method  for
restoration of the MR images [22]. This method can effectively
exploit the similarity in the non-local patches (non-local self-
similarity) and the local sparsity, which is intrinsically present
in  natural  images.  An  iterative  algorithm  based  on  Split
Bregman method coupled with self-adaptive cluster dictionary
learning method is used for image restoration.

3.1. Traditional Approach

In  the  traditional  approach,  the  image  is  divided  into  n
patches  denoted  by  XK  where  k  =  1,2,..,n  and  k  is  also  an
indicator of the position of the patch in the image. An operator
is used to extract XK from the image, this operator is denoted by

. The image patch is expressed as

(3)

𝑦 =  𝐻𝑥 + 𝑘 

𝑎𝑟𝑔𝑚𝑖𝑛𝑥
1

2
||𝐻𝑥 − 𝑦||2

2 + 𝜏𝛽(𝑥)             
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2
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𝛺𝑘() 

𝑥𝑘  =  𝛺𝑘(𝑥) 
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To  replace  the  patch  back  to  its  former  position  in  the

reconstructed  image   is  used.  This  is  nothing  but  the

transpose of the function .

D Ɛ R
B s* M is used to yield a sparse representation for each

patch Xk in form of a sparse vector αkƐRM such that .
Here the number of atoms in D is denoted by M. The scenario
above can be mathematically expressed as

(4)

In the above equation, the norm used to measure sparsity is
determined  by  p  such  that  pƐ{0,1}  and  τ  is  a  constant.  The
above equation is  solved using Orthogonal  Matching Pursuit
(OMP) [23] which is a greedy algorithm.

The following expression represents the degradation based
sparsity approach

(5)

The altered and reconstructed image is

(6)

High  complexity  approximation  approaches  are  used  to
make  dictionary  learning  feasible  since  training  a  proper
dictionary  is  a  non-convex  problem

3.2. CSR Approach

In  this  approach,  instead  of  using  patches,  a  cluster  of
patches  is  used  for  training  the  dictionary.  Sparse
representation  of  clusters  is  used  to  capture  the  similarity
present in non-local patches, a task which traditional methods
failed to do. Fig. (1)  illustrates the CSR approach for cluster
creation from the MR Imagery x.

Fig. (1). Portraying the CSR approach for cluster creation from the MR
Imagery x.

The image x of size N is divided into patches Xk where x =

1,2,...,n  such that the size of xk  is .  Now in L  * L
training  window,  the  top  c  matches  for  a  patch  are  selected.
These c best-matched patches for a patch xk are stored in a set
Sx.  The  patches  in  Sx,  are  stored  in  a  matrix  XGK  such  that

.

A function to extract a cluster XGK from image is defined
as:

(7)

To  replace  the  patch  back  to  its  former  position  in  the

reconstructed image  is used. This is again nothing but
the transpose of the function .

In the traditional method, a general dictionary was used to
improve  efficiency  a  self-adaptive  dictionary  was  used.  This
self-adaptive dictionary is trained using the formula,

(8)

Similar to the formula in the traditional method, the norm
used to measure sparsity is determined by p such that pƐ{0,1}
and τ is a constant.

In  the  above expression,  there  are  two parameters  which

need to be optimized Dx and { } hence the problem is a joint
optimization  problem.  When  the  similarity  between  the
reconstructed  image  and  the  original  image  is  high,  then  the

value of  will be low, while the value of the

second  term   will  be  low  when   is  very
sparse.

The clusters will be reconstructed using the self-adaptive
dictionary. The dictionary is solved using the SVD approach

where  both  Dx  and  { }  are  alternatively  optimized.  The
CSIR model using degraded version is represented as:

(9)

And the reconstructed image is expressed as:

(10)

The main difference between the model in the traditional
approach and the model in the CSIR approach is the different
dictionaries being used and the different sparse representations

Iterative shrinkage/thresholding (IST) was used in earlier
models  to  solve  the  problem  but  this  study  adopts  a  split
Bregman  Iteration  (SBI)  [24].

3.3. Experimental Results

The MR image of the human brain is iteratively enhanced
in quality using the CSR approach. A Gaussian blur kernel and

a  9x9  kernel  along  with  additive  noise  of  
comparison is used as the metric to compare the efficiencies of
both, the traditional approach and the CSR approach. PSNR is
expressed as for given two images I and J.

(11)

Here MSE is the mean squared error and is defined as:

(12)
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The  results  of  the  PSNR comparison  show that  both  the
kernels  yield  similar  results  and  Fig.  (2)  shows  a  graphical
comparison of the same.

Table 1. PSNR values for the experimental images.

MRI\
Method

CSR
Method

Non-Local
Means

Bicubic
Interpolation

Nearest
Neighbour

Interpolation
T-1 Axial 30.8592 22.2218 25.9786 21.0829
T-1 Axial 31.5304 22.1411 25.6068 20.9554
T-1 Axial 31.6757 22.1830 26.0537 20.8869
T-2 Axial 26.7767 18.6923 22.0170 17.6479

T-2
Coronal 25.5359 18.1610 21.9001 17.4234

T-2
Sagittal
Axial

26.2216 18.4218 22.1784 17.6759

Comparison between the CSR algorithm proposed in this
study and other methods which take an approach based on non-
local  means,  nearest  neighbour  and bicubic  interpolation has
been done. For this comparison, a 9x9 uniform kernel has been
utilized. The PSNR values give a measure of the effectiveness

of  the  different  algorithms  under  consideration  (Table  1).
Further, Table 2 presents the comparison of the various state-
of-the art (SOTA) techniques for Brain MRI Super-resolution.

Table 2. Comparison of various SOTA techniques for Brain
MRI Super-resolution.

Reference SR Technique Dataset Used Avg.
PNSR

Chen et al. [50] 3D DSCRN HCP 35.05
Pham et al. [31] 3D CNN Kirby 21 35.20

Sanchez et al. [51] 3D GAN ADNI Database 33.28
Wang et al. [52] Enhanced 3D GAN HCP 37.28
Mane et al. [53] 3D FSRCNN HCP 37.53

Ours CSR MS Lesion Brain
Database 30.86

The graph below shows the relation between PSNR value
and  the  number  of  iterations,  where  in  the  PSNR  value
increases  with  every  iteration  (Fig.  3).

The  two  forms  of  MR  T1  and  T2-w  brain  MS  lesion
images  [25]  (Figs.  4-9)  are  used  for  evaluating  the
reconstructed images using CSR and other methods mentioned.

Fig. (2). Influence of different blur kernels on CSR Model.

Fig. (3). Number of Iterations vs. PSNR (dB) - T2-w coronal MR Slice 108.
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Fig. (4). T1-w MRI data (slice 45) - reconstruction results – (a) Original Image, (b) Blurred Image, (c) Reconstructed Image using CSR, (d) Non-
local means Image Output, (e) Bicubic Interpolation Image Output and (f) Nearest Neighbor Interpolation Image Output.

Fig. (5). T1-w MRI data (slice 90) - reconstruction results - (a) Original Image, (b) Blurred Image, (c) Reconstructed Image using CSR, (d) Non-local
means Image Output, (e) Bicubic Interpolation Image Output and (f) Nearest Neighbor Interpolation Image Output.

Fig. (6). T1-w MRI data (slice 135) - reconstruction results - (a) Original Image, (b) Blurred Image, (c) Reconstructed Image using CSR, (d) Non-
local means Image Output, (e) Bicubic Interpolation Image Output and (f) Nearest Neighbor Interpolation Image Output.

              
            (a)                               (b)                               (c)        

                
            (d)                              (e)                               (f)        
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Fig. (7). T2-w MRI data - axial plane (slice 90) - reconstruction results - (a) Original Image, (b) Blurred Image, (c) Reconstructed Image using CSR,
(d) Non-local means Image Output, (e) Bicubic Interpolation Image Output and (f) Nearest Neighbor Interpolation Image Output.

Fig. (8). T2-w MRI data (slice 108) - coronal plane - reconstruction results - (a) Original Image, (b) Blurred Image, (c) Reconstructed Image using
CSR, (d) Non-local means Image Output, (e) Bicubic Interpolation Image Output and (f) Nearest Neighbor Interpolation Image Output.

Fig. (9). T2-w MRI data (slice 90) - sagittal plane - reconstruction results - (a) Original Image, (b) Blurred Image, (c) Reconstructed Image using
CSR, (d) Non-local means Image Output, (e) Bicubic Interpolation Image Output and (f) Nearest Neighbor Interpolation Image Output.
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          (d)                               (e)                               (f)        
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Fig. (10). Performance comparison with various c for three different MRI slices.

Fig. (11). PSNR evolution with respect to sparsity parameter lambda.

3.4. Influence of Number of Best-matched Patches

The influence of ci.e. the number of best-matched patches
on  the  sensitivity  of  the  performance  is  elucidated  in  this
subsection.  An  experiment  was  conducted  to  explore  this,
various  values  of  c,  from 20  to  120  were  sampled  and  three
tests  were  taken.  Fig.  (10)  shows  the  comparison  of  the
performance along with the value of c. The flat curves in Fig.
(10) indicates that the algorithm is not sensitive to the value of
c.  In  this  study,  the  value  of  c  is  set  to  60  as  experiments
yielded the highest performance for c in the range of 40 to 80.

3.5. Effect of Sparsity Parameter

By observing Fig. (11), we can conclude the following 2
things.  There  exists  an  optimal  λ  for  which  the  image  noise
suppression is balanced with image details  preservation such
that  PSNR is  the  highest.  A large value of  λ  leads  to  loss  of
details and a small value causes the failure in suppressing the
image  noise.  Thus  the  optimal  value  for  each  test  image  is
same, this helps in parameter optimization as the optimal value
of λ can be determined using a single test image and this λ can
be  further  used  for  all  the  other  test  images.  λ  and  δ  are
correlated  to  each  other.  A  large  δ  leads  to  a  large  λ

CONCLUSION

This  paper  proposes  the  use  of  cluster-sparse  assisted
super-resolution  algorithm  for  Magnetic  resonance  (MR)
images.  This  algorithm  captures  the  similarity  in  non-local
patches  by  training  the  model  for  clusters  instead  of  patches
using  a  self-adaptive  dictionary.  This  type  of  training  using
clusters  also leads to  better  edge and texture retention in  the
reconstructed  image.  The  experimental  results  show  that  the
proposed  algorithm  is  more  robust  to  noise  and  is  more
effective in producing high-resolution images than traditional
SR methods dealing with MR images.

As  a  result,  usage  of  this  algorithm  can  lead  to  more
effective information extraction from MR images in  medical
diagnosis  and  research  leading  to  enhanced  detection  of
lesions.

The current trend in MR image super-resolution involves
using deep learning approaches. Convolutional neural networks
are used to develop end-to-end image super-resolution model,
where  various  convolution  kernels  extract  features  from  LR
input image to form a feature map, this feature map is used to
generate  HR  images.  More  recently,  Generative  Adversarial
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Networks (GANs) have been used for  MR image SR. GANs
learn to generate realistic HR image from LR image input, such
that the generated HR image is hardly distinguishable from real
HR images. However, deep neural networks consume a lot of
memory and take a lot of time to compute. Training of these
models and inference using them is heavily constrained by the
availability  of  graphical  processing  units  for  mathematical
computations  [47  -  54].
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