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Abstract: Skeletal maturity estimation is routinely evaluated by pediatrics and radiologists to assess growth and hormonal disorders. Methods
integrated with regression techniques are incompatible with low-resolution digital samples and generate bias, when the evaluation protocols are
implemented for feature assessment on coarse X-Ray hand images. This paper proposes a comparative analysis between two deep neural network
architectures, with the base models such as Inception-ResNet-V2 and Xception-pre-trained networks. Based on 12,611 hand X-Ray images of
RSNA Bone Age database, Inception-ResNet-V2 and Xception models have achieved R-Squared value of 0.935 and 0.942 respectively. Further, in
the same order, the MAE accomplished by the two models are 12.583 and 13.299 respectively, when subjected to very few training instances with
negligible chances of overfitting.
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1. INTRODUCTION

The determination of bone age provides information about
an  individual’s  structural  and  biological  maturity.  It  can  be
used as a tool for clinical diagnosis of diseases associated with
abnormally short or tall stature in children [1] or for forensic
purposes.  It  can  also  prove  to  be  useful  in  ascertaining  the
chronological  age  if  accurate  birth  records  are  unavailable.
Many  deep  learning  applications  have  been  successful  in
substituting  the  former  methods.

Traditionally, the Tanner Whitehouse [2] and the Geurich
and  Pyle  [3]  methods  are  widely  practiced  in  clinical
assessment and diagnostics; however, these are labor-intensive
and  time  consuming,  vulnerable  to  observer’s  mishandling.
Predictive  analysis  is  carried  out  on  four  major  ossification
regions in hand, namely epiphyses bone, medial carpal, radius,
and the ulna. The first three regions drastically vary according
to age, sex and ethnicity [4, 5]. The phalangeal analysis is the
most  suitable  in  children (above age 6  in  females  and above
age  8  in  males)  and  therefore,  computer-aided  medical
diagnostic (CAD) systems [6 - 8] method can be deemed the
best if applied. The associated techniques can pick out relevant
aspects from the phalangeal region using a digital hand atlas.
The same cannot be applied to children below the ages of 5-7
years  since  the  presence  of  soft  tissue  makes  the  process  of
segmentation between epiphysis  and metaphysis  re-gions  [9]
difficult. Among the other alternatives that have been explored
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is  the  CAD-based  feature  extraction  from  carpal  region-of-
interest (ROI) of prepubescent children and the related studies
have also been positively assessed [10, 11]. However, due to
the  complexities  surrounding  limitations  of  the  algorithm,
carpal  ROI  has  not  yet  been  incorporated  into  the  bone  age
assessment process. An interesting study for reconstruction in
the field of surgical procedures was carried out by Solari et al.
[12] which involves reducing postoperative CSF leak.

Deep  Learning  [13]  and  its  derivatives  have  been
successful in computer vision tasks such as ob-ject detection,
classification  and  segmentation  [14,  15].  Some  valuable
articles [16 - 18] have featured efficient means and methods for
biomedical image analysis. Deep CNNs comprise pooling and
convolution  layers  that  learn  hierarchical  feature
representations from images, followed by an ensemble of fully
connected layers and dense layers that are trained on features
extracted from previous layers. It has been possible to create
innovative algorithms due to the availability of large datasets,
most of which consist of detailed annotated features, and these
algorithms/methods have increasingly boosted performances of
analytical  methods.  Similar  approaches  have  also  been  im-
plemented  in  bone  age  assessment  tasks  [19  -  22],  including
bone segmentation for advanced feature extraction and thereby
facilitating better result achievement while leaving negligible
error margin rates.

In  this  work,  two  different  DNN  based  frameworks  for
bone maturity estimation on the RSNA dataset constituting of
10,000 X-Ray images  of  the  human hand are  evaluated.  The
process involves a comparative analysis between two networks,
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with the base models as Inception ResNet v2 and Xception pre-
trained  networks.  The  methods  suggest  the  superior
performance of the Xception model over the Inception model,
however,  the  Inception  ResNet  v2  model  had  a  better
performance during model training. The Mean Absolute Error
(MAE)  evaluated  on  the  test  set  with  the  Xception  model
achieves best results with a deviation of around 12.583 months,
whereas the Inception ResNet v2 results in a test set MAE of
around  13.299  months,  making  the  overall  procedure  more
optimized and can thus assist in improved clinical diagnostic
evaluations.

2. RELATED WORKS

The  standard  bone  age  estimation  paradigm  is  centered
around the Geurich and Pyle  [3]  and Tanner  Whitehouse [2]
methods [23]. Deep Convolutional Neural Networks [24] have
been widely successful in research related to medical imaging.
Pan et al. [25] applied deep transfer learning techniques such
as multi-characteristic CNNs and an ensemble approach on the
RSNA  dataset  for  BAA.  Their  model  achieved  an  MAE  of
8.59,  6.96 and 7.35 months  on all,  male,  and female  cohorts
respectively.  Mansourvar  et  al.  [26]  designed  an  automated
BAA system that used CBIR (Content Based Image Retrieval)
and returned an average error rate of -0.170625 years. Rucci et
al.  [27]  developed  a  scheme  for  bone  classification  using
neural networks in the Tanner Whitehouse method (TW2) [2]
but their results were relatively un- satisfactory with an error
rate  of  1.4 years.  Wu et  al.  [28]  incorporated two subnets  in
their  deep  learning  based  pipeline  on  the  RSNA  dataset:
MASK  R-CNN  for  eliminating  background  noise  and  a
residual attention subnet based on the aforementioned subnet
for  generating  the  final  predictive  output  and  related
visualizations. These techniques, however, are not well-suited
for  images  with  low  resolution  since  they  do  not  perform
precision-based  image  segmentation.  In  a  more  advanced
approach, Thoderg et al. [29] proposed the BoneXpert which
used a repository of 3000 carefully annotated bone images and
on the basis of a combination of shape, intensity and textural
features,  efficiently  determined  bone  maturity.  Pietka  et  al.
[30] developed a bone age estimation method using a digital
hand  atlas.  The  preprocessing  phase  yielded
epiphyseal/metaphyseal  regions  of  interest  (EMROIs)  which
there then fed to feature extraction functions. Three ratios of
distance were generated:  ed/md,  ed/dist,  and md/dist  and the
final  assessment  gave  near  accurate  results,  with  only  a
detection failure in 4% of the radiographs. Several other such
systems/methods  have  also  been  designed  [31  -  33].  Certain
algorithms  [34  -  37]  have  also  been  established  that  can  be
applied  in  hand-wrist  analysis,  dealing  with  segmenting  out
only certain zones of the radiology images.

DCNN  can  be  efficiently  reinforced  in  tasks  related  to
bone  age  estimation  [38  -  40,  19].  Though  some  of  these
techniques  give  satisfactory  results,  most  of  them  generally
tend to be inclined towards some common shortcomings:

(1) The techniques might generate bias since the evaluation

is  centered  around  coarse  digital  processed  images  of  hands
bones.

(2)  Most  use  regressors  that  are  more  suitable  for  low
resolution images rather than high quality latent counterparts.
This can limit the overall performance of the BAA system.

3. DEEP NEURAL NETWORKS

Multiple assessments suggest incorporation of Deep Neural
Network  architectures  instead  of  Convolutional  Neural
Networks.  Many  researchers  in  their  previous  contributions
have  tried  to  use  Convolutional  Neural  Networks  for  the
identification  of  skeletal  age  from  X-Ray  images,  but  the
methods involved using space invariant ANN’s, based on their
shared-weights  architecture  and  translation  invariance
characteristics.  Deep  Neural  Networks  subject  to  methods
involving  the  transfer  of  feature  maps,  layer  by  layer  as
supplementary  information,  to  perform  batch-wise  model
preparation.  Pre-trained  DNN  models  like  Inception-ResNet
V2  and  Xception  are  selected  as  base  models,  and  more
convolutional  blocks  are  added  to  these  base  models  to
evaluate  them  independently.

4. METHODS

This  paper  proposes  a  method  to  identify  the  age  of
subjects  from  hand  X-Ray  images.  This  involves  in-
corporation of a comparison analysis of two pre-trained Deep
Neural Network classifiers, namely Inception-ResNet V2 and
Xception.  Different  evaluation  parameters,  such  as  Mean
absolute error (MAE), Mean squared error (MSE), Root mean
squared error (RMSE) and R-squared are used to identify the
range from their predicted age and a ground truth labelled by
the  medical  experts.  The  proposed  method  suggests  the
performance  of  models  similar  to  medical  experts  and  are
aimed  as  highly  useful  tools  for  computer-aided  diagnosis,
towards  easier  age  identification.  The  experiments  were
conducted  using  NVIDIA  P100  Graphics  Processing  Unit
(GPU). The setup further aids us to conduct experiments faster
and gather results at a rapid rate than usual (Fig. 1).

Fig. (1). Flowchart for the proposed model.

4.1. Data description

The RSNA X-Ray data has been collected from Pediatric
Bone  Age  Challenge  2017  competition.  The  dataset  [41]  is
originally contributed by Stanford University, The University
of  Colorado  and  The  University  of  California,  Los  Angeles.
We have taken advantage of a dataset which consists of 12,611
X-Ray  images  of  human  hand.  The  dataset  contains  hand
images for image accession. The sample of X-Rays is shown in
Fig. (2).
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Fig. (2). Dataset description.

4.2. Data Pre-Processing and Augmentation

The  X-Ray  images  were  already  in  high-dimensional
format; hence enhancing or distorting features in images was
not required. However, each image was resized to 512 X 512
pixels.  The  images  were  changed  to  gray-scale  so  that  the
number of channels is reduced to 1, thus affecting complexity
of  the  architectures.  Image  Data  Generator  is  used  to  create
batches  of  digital  image  data  by  using  real-time  data.  This
involves  the  augmentation  of  data.  The  data  augmentation
strategy in- creases data diversity for a model to increase their
training  capacity  without  any  increase  in  training  instances.
This  method  is  carried  out  using  enhancement  tools  like
cropping, flip, padding, resizing or changing rotation angle in
order to manipulate source data.

The size  of  the  data  was reduced from 12,611 images to
10,000  images,  which  involves  the  removal  of  labels  having
duplicate  or  erroneous  indexes.  The  new  total  is  split  into  a
training  set  (6,000  images),  a  test  set  (2,000  images),  and  a
validation  set  (2,000  images).  Upon  completion  of  the
preprocessing  steps  up  to  a  sufficient  standard,  the  DNN
architectures were finally applied upon the obtained images as
part of the main evaluation.

4.3. Model Architectures

The  Deep  Neural  Network  architectures  used  for
assessment  were  chosen  because  of  their  optimized
performance when compared to other contemporary pre-trained

DNN classifiers. Both the models were initially set to train for
15 epochs. A greater number of epochs was not used since the
same  can  prompt  model  overfitting,  while  less  number  of
epochs  can  bring  about  an  underfit  model.  This  technique
permits  users  to  determine  huge  number  of  training  epochs,
training halts and determine when the model shows promising
improvement  across  the  validation  dataset.  Three  callback
techniques  are  utilized  for  model  compiling,  specifically
ModelCheckpoint,  EarlyStopping  and  ReduceLROnPlateau.
The  ModelCheckpoint  callback  class  allows  to  define  the
location  and  settings  to  save  improved  model  weights.  The
EarlyStopping  callback  is  configured  when  instantiated  via
arguments. ReduceLROnPlateau callback monitors a parameter
and  if  no  improvement  is  observed  for  a  certain  number  of
'patients' per epoch, the learning rate is diminished.

4.3.1. Inception ResNet v2

Inception  ResNet  V2  (Inception  ResNet  v2)  [42]  is  a
deeply convoluted neural network that is a hybrid of Inception
and  the  ResNet  modules.  Here  residual  connections  are
introduced to add the output of the convolutional operations of
the  inception  modules  to  the  input  and  further  the  1  X  1
convolutions  are  applied  after  the  original  convolutions  to
resemble  the  depth  size.  The  residual  connections  replace
pooling operations. The stability in the network is maintained
by scaling the residual activation functions by values around
0.1 to 0.3.
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As  the  model  architecture  is  deep  enough  to  overfit  the
data, we have employed dropout layers. These layers randomly
drop out some of the nodes to bypass the complexities in the
model, which in turn affects our model by losing vital patterns
in  the  data.  This  problem  is  evaded  by  a  layer  of  batch
normalization.  It  normalizes  the  data  to  a  definite  range  to
dodge covariance shifting. The total number of parameters in
the model is reduced by the global average pooling layer, thus
decreasing any further chances of overfitting. The loss function
is  optimized  by  Adam  optimizer  [43].  The  underlying
equations for effective convergence and weight updates using
Adam optimizer are explained in Equations 1-4.

Initial weights:

(1)

Adam optimiser update equations:

(2)

(3)

(4)

Here,  refers to element-multiplication and in Equation 4,
the operations under the root are also handled element-wise.

This model is trained upon 375 images per batch through
16 such batches during the training phase and verified on 125
images per batch for 16 batches through the validation phase.
This batch size is maintained for generalization of the results.
This generalization of results helps our model to predict further
instances outside the training set.

4.3.2. Xception

The Xception network [44] is a deeply convoluted neural
network  that  uses  feature  extraction  to  learn  further  distinct
patterns in the data with a lesser estimate of parameters. The
primary  principle  of  Xception  network  is  that  it  uses  cross
channel  correlation  and  spatial  correlation  in  a  decoupled
manner.  This  architecture  is  mainly  centered  around  depth

separable convolution accompanied by point-wise convolution,
consisting  of  36  convolutional  layers  structured  into  14
modules for core feature extraction. The Xception network is
the most improved form of the Inception network.

Additionally, batch normalization is used to normalize the
input data, which controls the co-variance shift in the specified
image  data.  It  also  enables  the  data  to  learn  by  itself
independently.  Batch  normalization  decreases  overfitting  by
adding some noise in the data which enables us to use lesser
dropout values. This saves the data from losing crucial visual
patterns in the data. A dropout layer of 0.5 is added after the
batch  normalization  layer.  This  layer  is  used  to  avoid
overfitting  in  the  data  alongside  keeping  the  crucial
information in  the  data  by batch normalization.  These layers
are  followed  by  a  global  average  pooling  layer  to  avoid
overfitting by minimizing parameters as it decreases the overall
spatial  dimensions  of  the  images,  reducing  the  model
complexity for better performance. This layer is succeeded by a
fully connected layer of the linear activation function to find
the  mean  absolute  error.  Here  Adam  optimizer  [43]  is
employed to learn and reach the global minima for optimizing
the  loss  function.  This  model  uses  a  batch  size  of  8,  which
enables us to use 750 images per training batch and 250 images
per validation batch. Sequentially running these mini-batches
helps  in  accumulating  variables  and  updating  them  in
succeeding  batches.  This  helps  in  optimizing  the  memory
usage and in generalizing the results by detouring from getting
stuck in the local minima.

4.4. Evaluation

Both of the DNN models were initially set to train for 15
epochs.  However,  due  to  callbacks  parameter,  the  Xception
model was trained for 15 epochs, while Inception ResNet v2
was  trained  for  10  epochs  and  then,  the  training  was  halted.
The  validation-loss  parameter  was  monitored,  and  mean
absolute  error  of  months  was  assessed  for  both  training  and
validation  batches  per  epoch.  The  evaluation  graphs  for  the
performance  assessment  of  both  models  are  demonstrated  in
Fig. (3).

Fig. (3). Evaluating and monitoring individual performance of DNN models vs epochs with respect to a) Training loss, and b.) Validation loss.

ρm ← 1, ρv ← 1,m← 0,v← 0

m← βmm + (1− βm)∇wJ

v ← βvv + (1 − βv)(∇wJ Ⓢ ∇wJ ) 

w← w − α(
m√
v + ε

√
1− ρv

1− ρm
)

a) b)
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5. RESULTS

The  DNN  models  were  compared  using  evaluation
parameters,  such  as  Mean  Squared  Error  (MSE),  Mean
Absolute  Error  (MAE),  Root  Mean  Squared  Error  (RMSE),
and  R  Square  value.  These  four  error  metrics  are  used  to
determine  the  model  with  more  optimised  results.

The  Mean  Absolute  Error  (MAE)  is  a  metric  used  to
determine  the  similarity  between  two  sets.

(5)

(6)

The  Root  Mean  Squared  Error  (RMSE)  is  a  metric  for
determining  the  similarity  between  the  true  and  predicted
values.  This  parameter  is  similar  to  MAE,  except  for  two
conditions. Firstly, each absolute error is squared before being
summed.  Secondly,  the  final  result  (MSE)  is  square-rooted
before being returned.

(7)

The idea of R squared is that if more samples are added,
the coefficient will show the prob- ability of a new point falling

on the line.

(8)

As shown in Table 1, the parameters suggest almost similar
performance  of  both  the  DNN  models.  The  performances
eventually can be boosted if more data is added to the training
set. Xception has a MAE of 12.583 while Inception ResNet v2
has an MAE of 13.299. The final R- Squared value is 0.943 for
Xception,  whereas  Inception  ResNet  v2  achieves  a  value  of
0.935. All these observations clearly show that Xception has a
better chance of age identification than Inception ResNet v2.
Fig. (4) shows the distribution of predicted results with respect
to ground truth for both models.

The models employed in this system were used to predict
the  age  of  the  hand  X-Rays  in  terms  of  months,  with  pre-
determined  ground  truth  set  by  the  medical  experts.  The
results,  as  demonstrated  in  Fig.  (5),  show  a  deviation  from
actual age in months in terms of MAE from the ground truth.
Both  the  models  present  almost  similar  performances,  thus
guaranteeing  enhanced  identification  examples  with  fewer
training  instances.

Additionally,  both  models  showcase  improved
performances in terms of R square parameters, which denote
the condition that the models already have a higher chance of
correctly  identifying  the  age  if  exposed  to  and  tested  upon
unseen data.

Table 1. Performance analysis using evaluation metrics.

Metrics Used Inception ResNet V2 Xception
MSE 287.328 254.025
MAE 13.299 12.583

RMSE 16.951 15.938
R squared 0.935 0.943

Fig. (4). Predicted results vs actual results of a) Inception ResNet v2, and b) Xception model.
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1

n
)

n∑
i=1

(yi − xi)2

MAE = (
1

n
)

n∑
i=1

|yi − xi|

RMSE =

√√√√(
1

n
)

n∑
i=1

(yi − xi)2

R− Squared = 1−
( 1
n )

∑n
i=1(yi − ŷi)2
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Fig. (5). Predicted age vs actual age of a) Inception ResNet v2, and b) Xception model.

CONCLUSION

We have proposed a fully automated system for efficiently
determining  skeletal  maturity  using  the  RSNA  dataset.  The
system,  consisting  of  two  primary  models,  Xception  and
Inception  ResNet  V2,  automatically  extract  relevant  features
from  the  data  and  achieves  excellent  outcomes  in  terms  of
mean absolute error of 12.583 and 13.299, respectively, in the
models.  The  results  could  be  further  enhanced  if  tried  with
system specifications allowing more reduction of the Learning
Rate  initially  unaffected  because  of  callbacks.  The  proposed
model must also be exposed to more diverse training data to
permit model diversity and generalization of the results, which
would provide an advantageous assessment of images to make
image identifications with reduced mean absolute error.
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