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Abstract:

Background:

Because about  30% of  epileptic  patients  suffer  from refractory epilepsy,  an efficient  automatic  seizure prediction tool  is  in  great  demand to
improve their life quality.

Methods:

In this work, time-domain discriminating preictal and interictal features were efficiently extracted from the intracranial electroencephalogram of
twelve  patients,  i.e.,  six  with  temporal  and  six  with  frontal  lobe  epilepsy.  The  performance  of  three  types  of  feature  selection  methods  was
compared using Matthews’s correlation coefficient (MCC).

Results:

Kruskal Wallis, a non-parametric approach, was found to perform better than the other approaches due to a simple and less resource consuming
strategy as well as maintaining the highest MCC score. The impact of dividing the electroencephalogram signals into various sub-bands was
investigated as well. The highest performance of Kruskal Wallis may suggest considering the importance of univariate features like complexity and
interquartile ratio (IQR), along with autoregressive (AR) model parameters and the maximum (MAX) cross-correlation to efficiently predict
epileptic seizures.

Conclusion:

The proposed approach has the potential to be implemented on a low power device by considering a few simple time domain characteristics for a
specific sub-band. It should be noted that, as there is not a great deal of literature on frontal lobe epilepsy, the results of this work can be considered
promising.

Keywords: Temporal lobe epilepsy, Frontal lobe epilepsy, Time domain features, Intracranial EEG, Feature selection, Matthews’s correlation
coefficient.
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1. INTRODUCTION

Epilepsy  is  the  second  most  common  and  devastating
neurologic  disease,  which  affects  over  70  million  people
around the world [1–5]. For some patients, it can be managed
with antiepileptic medications or surgery. However, 20 to 30%
of them would likely get worse after the initial diagnosis, and
some may even become refractory to the current medicine  [4,
5].  Anticipating  seizures  enough  in  advance  could  allow
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patients  and/or  caretakers  to  take  appropriate  actions  and
therefore,  reduce  the  risk  of  injury  [6].

Seizure  is  an  irregular  neural  activity  in  the  form  of  a
sudden uncontrolled electrical  discharge in  the  cortical  brain
regions.  As  a  result,  a  collection  of  nerve  cells  start  firing
excessively  and  synchronously.  People  with  frequent  and
unprovoked  seizures  are  usually  diagnosed  as  epileptics  [7],
[8].

Intracranial  EEG  (iEEG)  is  an  electroencephalography
recording  utilizing  intracranial  electrodes  implanted  in  the
brain and require a surgical procedure [4]. So, compared to the
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scalp  electrodes,  EEG  is  less  noisy  and  seizures  can  be
identified typically earlier  through the intracranial  electrodes
[6, 9].

The International League Against Epilepsy (ILAE) divided
epileptic seizures into partial or focal and generalized seizures.
Focal  seizures  originate  in  a  limited  region  of  the  brain  and
may  spread  to  other  regions.  On  the  other  hand,  generalized
seizures are initiated in bilateral hemispheric areas and quickly
propagate to all cortical areas [10]. Though there are different
forms of seizures, we focused on those that are focal, mainly in
the  temporal  and  frontal  lobes,  entitled  to  Temporal  Lobe
Epilepsy (TLE) and Frontal Lobe Epilepsy (FLE), respectively.

TLE is one of the most prevalent forms of focal epilepsy. It
has  received  a  significant  amount  of  attention  from
neurologists  due  to  its  high  likelihood of  clinical  occurrence
[11–14]. This kind of epilepsy may be treated medically at the
onset of the disease with different antiepileptic drugs [14].

FLE  is  the  second-most  common  form  of  focal  epilepsy
after  TLE  accounting  for  25%  of  epilepsy  [15–18].  Instead,
FLEs,  as  compared to  TLEs,  tend to  be  brief,  drug-resistant,
more problematic, and to occur during sleep. Furthermore, the
surgery for FLE has poorer outcomes than for TLE; as a result,
the surgical workup of FLE is even more demanding [15, 19],
[20]. Diagnosis of the FLE is rather hard due to having similar
symptoms as a sleep disorder, or night terror, and psychiatric
diseases  [19].  Regarding  the  detection  of  FLE,  some  works
have been published by analyzing various signals in the body
such  as  EEG,  ECG  (Electrocardiography),  EMG
(Electromyography),  and  EOG  (Electrooculography)  [19],
[21–25].  One  report  about  the  prediction  of  frontal  lobe
epilepsy on WAG/Rij rats was published [15] and to the best of
the authors’ knowledge, no previous studies have been reported
in  the  prediction  of  frontal  lobe  epilepsy  of  humans.  Then,
implementing a prediction system for FLEs is crucial due to the
lack of supervision at night.

Several feature extraction techniques have been introduced
in the last  few years,  among them, the time-domain ones are
the earliest recommended methods. Time-domain features are
employed  to  achieve  discriminative  information  at  a  low
computational  cost.  The  obtained  features  are  then  fed  to
feature  selection  method  [26].  High-quality  features  can  be
defined  as  those  that  produce  maximum  class  separability,
robustness, and less computational complexity. In this research,
the general impact of iEEG signal variations on 16 commonly
used features was investigated.

Designing  and  implementing  a  reliable  forecasting  and
early warning tool  that  can help epileptic  individuals  to  take
appropriate drugs during an early warning period is, therefore,
vital  [27–29];  it  will  significantly  improve  their  life  quality.
Furthermore,  since  portable  devices  are  so  available  in  daily
life,  targeting  tools  that  can  be  easily  implemented  in  such
devices is the main objective of this study.

To this aim, the tool should enhance the daily life of the
patients and increase their autonomy. However, knowing that:

for  new  customers,  the  application  will  have  to  be
frequently  updated  during  its  first  uses  to  be  able  to
integrate the new patient data efficiently,
some patients may not have regular access to wireless
connections and/or computers/tablets,

the opted strategy was to consider a dual-mode operation:
the training/update should be performed on the portable device
itself while the application is still working on prediction mode.
So, in order to ensure an efficient online training/prediction, it
is crucial to shorten the training CPU (Central Processing Unit)
time  while  making  the  tool  operation  as  simple  as  possible.
This tool will then have to integrate such constraints.

One of the limitations of published works in this  field is
about employing few limited data in their studies. The authors
attempted to study just one minute of data [30] or they used a
limited  amount  of  data:  5  min  preictal  and  10  min  interictal
[31]. Another notable limitation of existing works is filtering
the  EEG  signal  with  a  pass-band  filter,  which  removes  the
high-frequency  sub-bands  that  are  very  important  in  the
prediction  of  the  seizure  [32,  33].  The  plan  is  to  use  a  wide
range  of  frequencies  (up  to  120  Hz)  and  consider  the  whole
available data for the nominated patients.

Several feature extraction techniques have been introduced
in the last few years, among them the time-domain ones are the
earliest  recommended  methods.  Time-domain  features  are
employed  to  achieve  discriminative  information  at  a  low
computational  cost.  The  obtained  features  are  then  fed  to
feature  selection  methods  [26].  High-quality  features  can  be
defined  as  those  that  produce  maximum  class  separability,
robustness,  and  less  computational  complexity,  a  key
parameter  to  consider  while  targeting  their  use  in  portable
devices.  In  this  research,  the  general  impact  of  iEEG  signal
variations  on  16  commonly  used  features  was  investigated.
However, little evidence has been reported on the effectiveness
of various feature selection methods on EEG data of epilepsy
patients.  Therefore,  it  is  required to explore their  differences
and  find  which  one  may  work  better  than  the  others  in
perspective to deploy such algorithm in an implantable medical
device that uses linear features, which allows rapid calculation
with less complexity in prediction of the seizure.

2. MATERIALS AND METHODS

The proposed method steps are illustrated in Fig. (1). In the
first  phase,  as  detailed  in  the  appendix,  six  EEG  signals  are
preprocessed  and  16  features  extracted  (these  features  being
adopted from previous studies). Then, the data are divided into
train and test sets and three kinds of feature selection methods
employed to reduce the data dimension, making the approach
computationally efficient. Next, the obtained results are tested
by  a  well-known  judging  classifier  namely,  Random  Forest.
The 30 top extracted important features are ranked by various
methods and fetched into the Random Forest classifier, while
Mathew’s correlation coefficient (MCC) is used to analyse the
performance. Finally,  the relevant features among the 30 top
ones are retained for the winner feature selection method.
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Fig. (1). An overview of the proposed work. D is considered as dimension of the data.

Fig. (2). An overview of an EEG signal containing seizure for a patient suffering from the frontal (on the top) and another patient with the temporal
lobe epilepsy (at the bottom). The seizure period is highlighted in red [3].

2.1. EEG Database

The  EEG  dataset  employed  in  this  research  is  from  the
University Hospital of Freiburg, Germany. The EEG-database
consists of two sets of files: “preictal (pre-seizure) data,” i.e.
epileptic  seizures  with  at  least  50  min  preictal  data,  and
“interictal  data,”  which  contains  about  24  hours  seizure-free
EEG-recordings.  The  EEG-database  comprises  six  iEEG
electrodes from 21 patients with a sampling rate of 256 Hz. In
this work, the participants are divided into two groups based on
the origin of their seizures. In this study, 12 epilepsy patients
(six TLE with the hippocampal and origins (134 hours) and six
FLE with neocortical origin (137 hours)), i.e., the set of data
available in the Freiburg database (Appendix B) were retained
[34].

In  Fig.  (2),  one-hour  iEEG  data  (single  channel)  from  a
patient  with  frontal  and  an  individual  with  temporal  lobes  is
depicted. As one can see, epilepsy from the frontal lobe (which
takes about 7 seconds) is shorter than the temporal one (which

takes  about  91  seconds).  In  addition,  the  morphology  of  the
signal over a given period of time for each type of epilepsy is
completely different. In fact, one can observe some hints in the
preictal stage of the temporal one that is not in the other one.

2.2. Feature Extraction

The  preliminary  stage  in  EEG  signal  analysis  is
preprocessing.  To  decrease  the  effect  of  factors  that  cause
baseline differences among the different recordings within the
dataset  and  remove  the  signal  DC  component,  iEEG  signals
were normalized using Z-score (expressed in terms of standard
deviations from their  means).  The only potential  artifact  that
could be addressed was the harmonic power line interference at
50  Hz.  The  50  Hz  interference  was  indirectly  eliminated  by
performing the sub-band filtering which Gamma was divided
into two sub-bands.

To deal with imbalanced dataset, an hour EEG signal was
divided  into  2  seconds  non-overlapping  windows  for  the
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interictal  section,  while  the  preictal  section  was  split  into
chunks  of  the  same  window  sizes  with  50%  overlapping.
Various  univariate  linear  measures  were  extracted  at  each
epoch of two seconds along with a bivariate linear measure, as
reported in Table 1. [35–39]. These time domain features, well-
known  in  seizure  forecasting,  are  explained  in  detail  in
Appendix  A.

Table  1.  Features  extracted  during  2  seconds  sliding
window.

S.
NO.

Features Comments Time of the
Computation for
Each Channel (s)

1 Energy One feature (36D)1 0.001593
2 Mean One feature (36D) 0.018089
3 Variance (VAR) One feature (36D) 0.011741
4 Skewness One feature (36D) 0.181114
5 Kurtosis One feature (36D) 0.014463
6 Interquartile range

(IQR)
One feature (36D) 0.036152

7 Zero Crossing Rate
(ZCR)

One feature (36D) 0.007410

8 Mean Absolute
Deviation (MAD)

One feature (36D) 0.010459

9 Entropy One feature (36D) 1.168083
10 Hjorth mobility One feature (36D) 0.007360
11 Hjorth complexity One feature (36D) 0.003935
12 Coefficient of

Variation (CoV)
One feature (36D) 0.010528

13 Root Mean Square
(RMS)

One feature (36D) 0.171703

14 MAX2 cross
correlation

15 values for 6
channels, but one

feature was
considered (90D)

0.087968 (between
two channels)

15 AR3 model Two features 4 (72
D)

0.026372

1 36D: 36-dimensional. 2 MAX: Maximum. 3 AR: Autoregressive. 4 (1 coefficient
and an error term).

Prior  to  feature  extraction,  six  band-pass  FIR  (Finite
Impulse  Response)  filters  were  utilized  to  divide  the  iEEG
signals into different frequency bands: Delta (0.5-4 Hz), Theta
(4-8  Hz),  Alpha  (8-12  Hz),  Beta  (12-30  Hz),  as  well  as  two
Gamma  bands  namely,  low-Gamma  (30-47  Hz),  and  high-
Gamma (53-120 Hz) [40–42]. This led to an input space of 630
features (dimensions) for each window.

2.3. Feature Selection

Feature selection is  a  vital  stage in analyzing the data  to
improve  model  performance  and  reduce  mathematical
computational  complexity by projecting the existing features
onto  a  lower  dimensional  space.  This  technique  reduces  the
input  dimensionality  by  removing  irrelevant  or  redundant
features from the entire feature set [32, 43–47]. In the machine
learning literature,  the approaches to feature subset  selection
are  often  categorized  as  filter,  wrapper,  and  embedded
strategies  [44,  46–48].

Filter approaches are based on the statistical properties of
explanatory  variables  (predictor  variables)  and  their

relationship  to  the  outcome  variable  (response);  they  are
basically  not  computationally  expensive.  There  are  a  lot  of
filter methods such as PCA (Principal Component Analysis),
LDA (Linear Discriminant Analysis),  and PLS (Partial  Least
Squares)  which all  find the linear  combination of  features to
characterize  two  or  more  classes.  However,  even  if  they  are
linear,  simple,  and  relatively  low  cost  to  reduce  the
dimensionality of the data, there is no clear interpretation of the
feature ranking. Moreover, PCA as a famous feature reduction
method  is  an  unsupervised  method,  which  does  not  consider
dependent variables [49–51].

We employed the Kruskal Wallis (KW), a nonparametric
test,  without  making  prior  assumptions  about  the  data
distribution,  unlike  the  One  Way  ANOVA  [52],  [53].

The value of Kruskal-Wallis ranking can be calculated as
the following equation:

(1)

N is the total number of observations across all classes, ni

is defined as the number of observations in group i, Rj  is the
mean rank of group i, c is the number of output group [53].

Wrapper  approaches  try  to  find  a  predictive  model  by
using various combinations of features, then select the set of
features that offer the highest evaluation performance. These
techniques  can  be  time  consuming  and  tend  to  be  slow.
Therefore, they are not appropriate for large-scale problems to
select the subset of features. One of the most popular wrapper
techniques,  Support  Vector  Machine-  Recursive  Feature
Elimination (SVM-RFE), was used which backward eliminate
features [54], [55]. The backward elimination technique builds
a  model  on  the  entire  set  of  all  features  and  computes  an
importance  score  for  each  one.  Then  it  removes  the  least
significant  features  at  each  iteration  which  enhances  the
performance  of  the  model.  In  other  words,  the  top  ranked
variables are eliminated last [54–56].

Embedded  techniques  are  inbuilt  feature  selection,
allowing  a  classifier  to  build  a  model  that  automatically
performs  attribute  selection  as  a  part  of  model  training
(performs feature selection and model fitting simultaneously)
[44, 57]. In this work, XGBoost (Extreme Gradient Boosting)
is used which has been broadly employed in many areas due to
its parallel processing, high scalability and flexibility [58–63].
This  embedded  technique  is  optimized  implantation  of
Gradient  Boosting  framework.  Boosting  is  building  a  strong
learner  with  higher  precision  with  a  combination  of  weaker
classifiers and it is known as the Gradient Boosting once the
weak classifiers in each phase are built based on the gradient
descent  to  optimize  the  loss  function  [59–63].  To  further
improve it, the XGBoost classifier has two regularization terms
(inbuilt  L1  and  L2)  to  penalize  the  complexity  of  the  model
and avoid overfitting [59, 60, 63].

2.4. Evaluation and Performance Analysis

After  extracting  a  number  of  features  to  discriminate
between  the  preictal  and  interictal  periods,  30  attributes  that
held  the  most  discriminative  information  were  deemed.  We

G=[
12

𝑁(𝑁−1)
∑

𝑅𝑖
2

𝑛𝑖

𝑐
𝑖=1 ] − 3(𝑁 + 1)      
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extracted  from  three  approaches  and  then  applied  each  new
group  of  features  to  one  of  the  most  powerful  ensemble
methods, Random Forest. This embedded approach belongs to
bagging  for  judging  the  performance  of  the  other  attribute
selectors  and  it  differs  from boosting  mechanism [64–66].  It
should be noted that a bagging classifier is selected rather than
boosting one to avoid systematic bias in the comparison results.

A  classifier  must  be  generalized,  i.e.,  it  should  perform
well when submitted to data outside the training set. Owing to
the issue of class imbalance, accuracy could be an inadequate
metric  to  evaluate  the  performance  of  the  classifier  [67–70].
Although  accuracy  remains  the  most  intuitive  performance
measure, it is simply a ratio of correctly predicted observations
over the total observations, so reliable only when a dataset is
symmetrical. However, this measure has been used exclusively
by some researchers in analyzing seizures [71–73].

Numerous  metrics  have  been  developed  to  analyze  the
effectiveness  and  efficiency  of  the  model  in  handling  the
imbalanced  datasets,  such  as  F1  score,  Cohen’s  kappa,  and
MCC  [68–70].  Among  the  above  popular  metrics,  MCC  is
revealed as a robust and reliable evaluation metric in the binary
classification  tasks  and,  in  addition,  it  was  claimed  that
measures like F1 score and Cohen’s kappa should be avoided
due to the over-optimism results especially on unbalanced data
[68, 69, 74, 75].

To visualize and evaluate the performance of a classifier,
the confusion matrix was used (see Table (2), which represents
the  confusion  matrix  of  a  binary  classification).  After
computation of the confusion matrices, it should be noted that
MCC  has  been  retained  to  compare  the  classification
performance and effectiveness of the feature selection methods.

Table  2.  The  confusion  matrix  for  a  binary  classification
task.

Actual Predicted
Positive Negative

Positive TP (True Positive) FN (False Negative)
Negative FP (False Positive) TN (True Negative)

2.3.1. Matthews’s Correlation Coefficient (MCC)

MCC takes into account all four quadrants of the confusion
matrix,  which gives  a  better  summary of  the  performance of
classification  algorithms.  MCC  can  be  considered  as  a
discretization of the Pearson’s correlation coefficient for two
random variables due to taking a possible value in the interval
between -1 and 1 [75–77].  The score of  1  is  deemed to  be a
complete  agreement,  −1  a  perfect  misclassification,  and  0
indicates that the prediction is no better than random guessing
(or the expected value is based on the flipping of a fair coin).

(2)

3. RESULTS

3.1. Dividing Signals Into Frequency Sub-bands

The  aim  of  this  study  is  to  analyze  and  rank  the  time-
domain  features  introduced  by  other  researchers  related  to
epileptic seizures in forecasting with EEG signals and compare
the performance of three feature selection approaches based on
the  interictal  and  pre-ictal  segments.  Given  the  goal  of
classifying iEEG data into two classes: “1” denoting the ictal
stage  and  the  period  preceding  a  seizure  and  “0”  denoting
seizure-free  periods  (interictal)  and  postictal  (the  time
following  a  seizure).

Before  ranking  the  features  and  comparing  them,  one
needs  to  investigate  how  much  dividing  EEG  signal  into
various sub-bands can be important. Therefore, a comparison
of  the  accumulated  energy  for  two  cases,  without  and  with
dividing  the  signal  into  6  sub-bands,  was  performed.  The
feature selection scores have represented both lobes in Fig. (3).
The result for both graphs shows that dividing the EEG signal
into various sub-bands can improve the performance of seizure
forecasting  because  it  contains  much  more  discriminative
information  than  the  other  case.  Interestingly,  the
dimensionality of data will be increased for now but, later, the
focus  will  be  on  specific  sub-bands  and  reducing  the
dimensional feature space to consume less memory at runtime.
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Fig. (3). Investigation of dividing the EEG signal into various sub-bands: top for temporal lobe bottom for frontal lobe.

3.2. Feature Selection Methods Comparison

It should be noted that three methods for feature ranking
were employed and afterwards independent train and test sets
were  defined  to  compare  their  performance  using  a  Random
Forest  classifier.  To  have  a  better  estimation  of  the
generalization performance of the work, we evaluated the top
30 selected attributes on the testing dataset, which has not been
used during the training process.

Using MATLAB, the calculations are made on an Intel(R)
Core  (TM)  i7CPU  3.3GHz,  and  16  GB  RAM.  Once  the
preprocessing stage was covered in MATLAB, MAT files were
converted to NumPy arrays and the rest of the work in Python
(3.7.6)  programming  language  was  developed.  The
computation time for each feature selection method is listed in
Table (3) and the performance of the various feature selection
methods is listed in Table (4).

Table  3.  The  comparison  of  computational  cost  of  three
feature selection methods applied on the train set.

Brain lobe/Selection
method Kruskal-Wallis SVM-RFE XGBOOST

Temporal lobe 12.4 min 3411 min 18.7 min
Frontal lobe 10.9 min 2375 min 12 min

By comparing  the  two above tables,  it  can  be  concluded
that  the  filter-based  method,  Kruskal  Wallis,  has  the  highest
MMC score and less computation time, while SVM-RFE has a
longer computation time compared to the other approaches and
shows the poorest performance.

It is worth mentioning that, in several existing publishing
works,  the  researchers  commonly  selected  nearly  5%  of  the
feature  sets  and  investigated  the  related  sensitivity.  In  this

work,  10,  20,  and  50  dimension  cases  were  examined  and  a
compression made with 30D based on the MCC score in Table
(5), highlighting the KW approach as the winner. The results of
both  lobes  obviously  demonstrate  an  increase  in  MCC score
while is computationally expensive and time consuming.

Table 4. The performance of the various feature selection
methods  for  both  lobes  applied  on  the  test  Matthews’s
correlation  coefficient  (MCC)  set  with  95%  confidence
interval  (2  second  window  for  each  lobe).

Selection method MCC score
performance Temporal lobe Frontal lobe

Kruskal-Wallis 0.55±0.003 0.24±0.003
SVM-RFE 0.40±0.003 0.11±0.002
XGBOOST 0.496±0.003 0.12±0.002

Table  5.  The  comparison  of  performance  of  the  various
dimension for KW method based on MCC score for both
lobes applied on the test.

The number of dimensions MCC score
Temporal lobe Frontal lobe

10D 0.44 0.07
20D 0.50 0.12
30D 0.55 0.24
50D 0.57 0.26

The top 30 ranked subsets are listed in Tables (6 and 7) for
TLE and FLE, respectively, based on the three feature selection
approaches.  The  most  popular  feature  ranked  by  the  three
feature selection methods is  AR. The second most  important
feature  is  the  MAX  cross-correlation  and  complexity  is  the

��� "

�

��.

��-

��/

��#

�� 

��"

���

��!

���

�
 �� � �� � !� ! "� *0�+

1
2
�%
&�
�


�������%��� �����
��%�)�)���%

��
'� ,	��� �
'� 3�4�$���� 0����$�����
	'�#�&����
	%

*)+



Feature Selection Techniques for the Analysis The Open Biomedical Engineering Journal, 2021, Volume 15   7

next  one.  Interestingly,  features  like  Mean,  Skewness,  Zero
Crossing Rate, and Entropy are not deemed as top 30 ranked

feature-subset  as  in  Tables  (6  and  7).  Also,  the  following
remarks  can  be  made:

Table 6. Top 30 feature-subset ranked by three types of approaches for temporal lobe epilepsy.

Top Features KW     SVM-RFE       XGBOOST
1 AR High-Gamma error MAX cross Beta AR error Beta
2 AR Alpha error AR Delta coefficient AR Beta error
3 AR Beta coefficient MAX cross High-Gamma AR High-Gamma error
4 AR Beta error MAX cross Beta AR Low-Gamma error
5 MAX cross Low-Gamma MAX cross Beta AR Theta Error
6 MAX cross High-Gamma MAX cross High-Gamma AR Delta error
7 AR High-Gamma Error RMS High-Gamma AR Delta error
8 IQR High-Gamma AR Theta coefficient AR Alpha coefficient
9 AR High-Gamma coefficient AR Theta Error Complexity High-Gamma
10 MAX cross High-Gamma RMS Beta AR Delta coefficient
11 IQR High-Gamma AR Beta coefficient AR High-Gamma error
12 MAD High-Gamma MAX cross Beta AR Delta error
13 AR Beta error MAX cross Delta Complexity Beta
14 Complexity High-Gamma MAX cross Delta AR Alpha coefficient
15 MAX cross Low-Gamma CoV Low-Gamma MAD High-Gamma
16 VAR High-Gamma MAX cross Alpha AR Alpha error
17 Energy High-Gamma RMS Delta MAX cross High-Gamma
18 RMS High-Gamma MAX cross Low-Gamma AR High-Gamma error
19 MAX cross High-Gamma RMS Theta AR coefficient Alpha
20 MAD High-Gamma MAX cross Beta AR High-Gamma coefficient
21 AR Low-Gamma error RMS Delta AR Beta coefficient
22 Complexity Low-Gamma RMS Low-Gamma AR Beta coefficient
23 MAX cross High-Gamma Complexity High-Gamma AR Beta error
24 VAR Low-Gamma Mobility Delta AR Alpha coefficient
25 Energy Low-Gamma Mobility Low-Gamma IQR Beta
26 RMS Low-Gamma MAX cross Delta AR Delta coefficient
27 IQR Low-Gamma Complexity Alpha AR Delta error
28 MAX cross Low-Gamma Complexity High-Gamma AR Alpha error

29 AR coefficient Alpha Complexity Low-Gamma AR Low-Gamma
coefficient

30 AR High-Gamma error Complexity Delta Mobility Delta

Table 7. Top 30 feature-subset ranked by three types of approaches for frontal lobe epilepsy.

Top Features KW       SVM-RFE XGBOOST
1 AR Low-Gamma error AR High-Gamma error AR delta coefficient
2 AR Alpha coefficient AR Alpha error AR Theta error
3 AR Theta error MAX cross High-Gamma AR Delta coefficient
4 AR Low-Gamma error AR Theta coefficient AR Theta error
5 AR Low-Gamma error MAX cross Beta AR Theta error
6 AR Theta error AR Delta error AR Delta error
7 Complexity Alpha MAX cross Alpha AR Low-Gamma error
8 IQR Alpha MAX cross Beta AR Alpha coefficient
9 Mobility Beta AR Delta error AR Alpha error
10 IQR Alpha RMS Low-Gamma AR Alpha error
11 IQR Theta MAX cross Delta AR Theta coefficient
12 IQR Beta RMS High-Gamma AR Beta coefficient
13 IQR Low-Gamma MAX cross Alpha AR Beta error
14 IQR Alpha Complexity Alpha Kurtosis High-Gamma
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Top Features KW       SVM-RFE XGBOOST
15 Kurtosis Beta MAX cross High-Gamma AR Beta error
16 AR Beta coefficient MAX cross Beta AR Low-Gamma coefficient
17 MAD Alpha MAX cross Theta AR Beta coefficient
18 MAD Beta MAX cross Low-Gamma AR High-Gamma error
19 Complexity Alpha MAX cross Beta AR Beta coefficient
20 IQR Theta RMS Delta AR Beta error
21 AR Beta Error MAX cross Alpha AR High-Gamma error
22 IQR High-Gamma MAX cross Theta AR Delta coefficient
23 AR Theta coefficient Complexity Delta AR High-Gamma error
24 Energy Alpha RMS Low-Gamma coefficient AR Delta error
25 RMS Theta Mobility Alpha AR High-Gamma coefficient
26 VAR Alpha Complexity High-Gamma AR Delta error
27 MAD Alpha Mobility Alpha AR High-Gamma error
28 Complexity Theta Complexity Low-Gamma AR Theta coefficient
29 Complexity Theta Complexity Delta MAD Beta
30 Energy Beta Mobility High-Gamma AR Delta coefficient

AR model  is  an  interesting  feature  along  with  MAX
cross correlation for all three feature selection methods
and both lobes
Delta sub band is considered an important sub band for

XGBOOST  and  SVM-RFE,  but  not  the  case  for
Kruskal  Wallis
Error  is  more  important  than  coefficient  as  AR
parameters  in  discriminating  feature  between seizure
and non-seizure for all three feature selection methods

Fig. (4). An overview of the features ranked by Kruskal-Wallis (KW) as a winner method.: (a) for temporal lobe epilepsy (TLE); (b) for frontal lobe
epilepsy (FLE).
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Some of the attributes were selected multiple times by the
feature  ranking  approaches  in  both  Tables,  like  AR  High-
Gamma  Error  which  has  been  chosen  by  Kruskal  Wallis  as
feature 1, 7, and 30 in Table (6). The reason behind that is such
features have been selected and presented without considering
the order of the electrodes.

Figs.  (4a  and  4b)  illustrate  an  overview  of  the  features
selected  with  the  KW  for  temporal  and  frontal  lobes,
respectively. Fig. (4a) confirms that amongst the Time-domain
parameters that play an important role in the prediction of the
seizure, AR is the top feature, followed by the cross correlation
and the IQR. On the other hand, Fig. (4b) shows that the AR
model,  a  measure  of  complexity  obtained  with  Hjorth’s
analysis, is an important feature besides IQR for patients with
frontal lope epilepsy.

In  the  last  step,  another  filtering  method  is  applied  to
obtain the product-moment correlation coefficient, or Pearson
correlation  coefficient,  in  order  to  identify  the  linear
relationship between the 30 top ranked features and, therefore,
to eliminate any redundant information. This coefficient can be
expressed as

(3)

where Cov(X1,  X2)  is  the  covariance of  two features  and
óXi  is  the  standard  deviation  of  each  variable.  ñ  can  take  a
value  in  the  range  of  [-1,+1]  with  +1  the  case  of  a  perfect
positive linear relationship between random variables and -1 a
negative  linear  relationship  between  two  features.  That  is  to
say, the larger X1 values the smaller X2 values and vice versa.
ñ=0 implies the independence between the variables. In other
words, the higher absolute value of the correlation coefficient,
the more similar they are [78–80].

Table  8.  Features  with  the  strongest  linear  relationship
among  top  30  features  with  the  highest  Kruskal-Wallis
scores.

Lobes Attributes with a Strong Linear Relationship
Temporal lobe AR High-Gamma error / AR High-Gamma coefficient

IQR High-Gamma / MAD High-Gamma
Energy High-Gamma / VAR High-Gamma

Complexity High-Gamma / Complexity Low-Gamma
VAR Low-Gamma / Energy Low-Gamma

Frontal lobe Complexity Alpha / Mobility Beta / Energy Beta
MAD Alpha / IQR Alpha / RMS Theta

IQR Beta / MAD Beta
Energy Alpha / VAR Alpha

The  product-moment  correlation  matrix  was  then
calculated  for  the  top  30  subset  of  features  with  the  highest
Kruskal-Wallis  scores.  The features  with the strongest  linear
pattern are reported in Table (8). Interestingly, one can see a
good relationship between IQR and MAD in both lobes, which
has  a  strong  linear  relationship  and  it  happens  in  Alpha  and
Beta sub-bands in  frontal  lobe and in  low and high-  Gamma
sub-bands for temporal lobe. Also, there is a close relationship
between variance and energy for both lobes.

4. DISCUSSION

For  various  reasons,  some  researchers  have  divided  the
EEG signal into various sub-bands [81, 82] while others have
not [30, 39]. The aim was, therefore, to consider both cases and
evaluate  the  impact  of  dividing  the  EEG  signal  into  various
sub-bands.  In  fact,  as  shown  in  Fig.  (3),  dividing  the  EEG
signal into 6 sub-bands will carry more predictive information
than not splitting it.

In  this  study,  three  feature  selection  methods  were
compared and the results showed that the filter method has the
highest  performance  with  the  highest  MCC.  Also,  KW  can
rank the features a lot faster, with the shortest computational
time.

A large panel of wrapper approaches has been proposed for
features  selection  but  most  of  them  are  computationally
expensive and complex in nature [53–55]. The results obtained
in  the  study  confirmed  this  fact:  SVM-RFE  has  the  lowest
prediction performance and is  the most  intensive in terms of
computation.  Although,  in  most  of  the existing works,  it  has
been claimed that the embedded methods that combine filters
and wrappers take advantage of both, the obtained results did
not  really  demonstrate  that  claim,  showing  that  the  non-
parametric  filter-based  method,  Kruskal  Wallis,  outperforms
better than the above approaches.

The  AR  method  estimates  the  power  spectrum  density
(PSD) of a given signal. Then, this approach does not have the
problem  of  spectral  leakage  and  one  can  expect  a  better
frequency resolution dissimilar to the nonparametric method.
PSD  can  be  estimated  by  calculating  the  coefficients  even
when the order is low [39, 83, 84]. Furthermore, the prediction
error term extracted from an AR model of the brain signals is
claimed to reduce during the preictal stage [85].

The maximum of cross-correlation, a bivariate feature, can
be  considered  as  a  measure  for  lag  synchronization  due  to
estimating the phase difference between two spatially separated
sensors  even  with  a  low  SNR  (Signal  to  Noise  Ratio)  [86],
[87]. The key points for Kruskal Wallis as a winner can be due
to not just considering the parameters of AR model and MAX
cross  coloration.  This  feature  selection  tried  to  engage  other
important  univariate  features  like  complexity,  which  has  an
estimation of statistical moment of the power spectrum.

The  temporal  lobe  is  responsible  to  deal  with  the
processing of information and it plays a vital role in long term
memory.  Gamma  rhythms  are  involved  in  higher  processing
tasks  and  cognitive  functioning.  These  waves  are  the
fundamental  waves  for  learning,  memory  and  information
processing. The Frontal lobe is responsible for emotion control
center,  planning,  judgment,  and  short-term  memory.  Theta
rhythms are produced to help one in creativity, relaxation, and
emotional connection. Alpha waves help in the feeling of deep
relaxation  and  Beta  waves  are  related  to  someone’s
consciousness  and  problem  solving  [88].

In  this  study,  it  was  found  out  that  the  low  and  high-
gamma  sub-bands  are  the  most  discriminating  ones  between
preictal  and  interictal  for  TLE  patients,  while  the  frequency
ranges from Theta to low-Gamma were found to be the most
discriminating features in six patients with FLE. The obtained

𝜌 =
𝐶𝑜𝑣(𝑋1𝑋2)

𝜎𝑋1𝜎𝑋2



10   The Open Biomedical Engineering Journal, 2021, Volume 15 Abbaszadeh et al.

results  confirmed  that  gamma  sub-bands  are  a  promising
biomarker in predicting of seizure for TLE [89–91]. However,
for  FLE,  one  should  consider  a  wider  range  of  frequencies,
including the lower frequency compared to TLE, in the preictal
stage.  Note  that  some  existing  works  in  detection  of  FLEs
proposed that a range of frequencies less than 50 Hz can play
dominant roles among different brain waves [22], [23], [92].

The  results  also  demonstrated  the  complexity  of  seizure
prediction  due  to  the  fact  that  the  frontal  lobes  of  the  brain
control  a  wide  variety  of  complex  structural  and  functional
roles  [15]–  [17],  [93].  These  findings  can  help  establish
specific  relationships  regarding  the  impact  of  each  lobe  in  a
specific  function  and  the  generation  of  waveforms  based  on
that function.

Furthermore,  by  comparing  the  performance  results  of
Kruskal Wallis for both lobes in Table (4), MCC is not close to
1, the perfect prediction case. The reason for not having a high
MCC is related to the low capacity of this version of Freiburg
database due to having data up to 90 minutes of preictal, or to
the  fact  that  some  seizures  take  few  minutes.  Based  on
Ramachandran et al. [71], it might be required at least 3 to 16
hours  before  the  onset  of  the  seizure  to  efficiently  predict
seizures which can be considered as a limitation in this study
and  weakness  of  this  database.  Another  possible  solution  is
employing non-linear measures, such as phase synchronization
to improve the model performance in forecasting seizures.

Moreover,  a  non-stationary  signal  like  EEG  can  be
considered as a stationary signal in a short duration epoch, like
a two-second window [94] and [95]. Also, based on the results
in Figs. (4a and 4b), the variation of the mean feature for both
lobes is nearly a constant value. This result partially confirms
the  previous  claim,  but  this  would  require  further
investigations.

The effectiveness of the Kruskal Wallis as a nonparametric
method is based on the fact that it does not need to assume a
data distribution model, making the results promising in feature
selection  of  EEG  data  of  TLE  and  FLE.  Therefore,  dealing
with a higher number of epilepsy patients will not be an issue
and this approach would be applicable to a larger set of data.
Furthermore,  the data divided into train and test  sets and the
model  was  built  by  random forest  was  trained  and  validated
with 10 fold cross validation. Also, we prevented overfitting,
which  can  be  considered  as  a  generalized  model  for  unseen
data.

Furthermore, applying MCC in measuring the performance
of the model, is a significant improvement over other existing
works  that  deemed  accuracy  as  the  performance  of  the
classifier  while  dealing  with  imbalanced  data  [31,  96–98].
Specifically,  authors  in  [71]  proposed  an  effective  feature
extraction method in improving classification accuracy while
the  imbalanced  ratio  was  not  reported  and  this  performance
metric  was  the  only  measure  of  the  performance  of  the
classifier.

It  is  believed  that  the  findings  of  this  work  can  be
implemented on low power hardware by efficiently considering
less  complex  features  for  a  specific  sub  band  with  the
information  from  only  one  patient,  instead  of  building  and

deploying a model for the entire patients in the database.

CONCLUSION

The  epileptic  seizures  are  the  temporary  occurrence  of
symptoms  due  to  synchronization  of  abnormally  excessive
activities of the brain nerve cells. However, reviewing the EEG
signals  will  be  a  time  consuming  task  for  neurologists  to
analyze  and  monitor  continuous  electroencephalograms.
Therefore,  even  it  is  quite  challenging,  implementing  a  high
performance  automated  analysis  of  EEG  signals  is  in  high
demand.

The Kruskal-Wallis feature selection strategy is simple and
less time consuming as compared to other approaches. Among
the  time-domain  features  investigated,  the  parameters  of  AR
model are ranked as the top features for both lobes. The second
most important features are the maximum of cross-correlation
and  IQR  for  temporal  and  frontal  lobes,  respectively.
Moreover, a high range of frequency like low and high-Gamma
have  been  introduced  as  an  interesting  sub-band  for  the
temporal lobe epilepsy, while the middle range of frequencies
from  Theta  to  Beta  can  be  seen  as  important  ranges  of
frequency  for  frontal  lobe  epilepsy.

Future  efforts  should  be  focused  to  reliably  improve  the
performance of the prediction on test set for a patient-specific
by  considering  a  combination  of  various  features  which
provide an estimation of phase, frequency and amplitude of the
EEG signal.
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Appendix A

Feature is a variable that can represent the signal variation
and in this work, common features were selected in analyzing
EEG  signal  which  discriminates  between  pre-ictal  and
interictal  phases  of  the  seizures.

Within a 2 s window, an EEG signal is first passed through
six FIR band-pass filters, leading to a total of a 36-dimensional
(36D)  feature  vector.  Note  that  the  dimensionality  of  MAX
cross correlation among the 6 channels for each sub-band will
be 90D. Then, extracting two features from the AR model (for
each sub-band) will add a 72-dimension to the feature matrix,
making a final a matrix of 630-dimensions.

In  this  study,  13  types  of  univariate  features,  a  bivariate
feature  along  two  features  extracted  from  AR  model  were
investigated.

1. Energy:

This feature can be considered as a measure of the signal
strength. Calculating the accumulated energy at a given time-
point  t,  is  a  commonly  used  feature  in  finding  abnormal
behavior in the brain. For a given discrete signal, x(n), the area
under the squared of a signal is called energy and is expressed
as [36], [39]:

2. Mean:

The mean of  a  discrete  signal,  x(n),  can  be  expressed  as
[37]:

Where N is the number of the samples and x(n) the discrete
signal

3. Variance:

The  second  moment  of  a  signal  is  called  the  variance.
Higher its value, higher the number of frequency components
the signal contains [87]

4. Skewness:

The  third  statistical  moment  measures  the  asymmetry  of
the probability distribution about its mean.

5. Kurtosis:

The  fourth  statistical  moment  describes  the  flatness  of  a
distribution real valued random variable.

6. Interquartile range:

The  Interquartile  Range  (IQR)  feature  is  a  measure  of
spread  and  variability  based  on  dividing  the  data  into  four
equal parts. The separated values Q1, Q2, and Q3 for each part
are named respectively first, second, and third quartiles. IQR is
computed  as  the  difference  between  the  75th  and  the  25th

percentile  or  Q3  and  Q1  as  the  following  [38],  [39]:

7. Zero crossing rate:

The  Zero  Crossing  Rate  (ZCR)  is  the  rate  at  which  the
signal changes signs or is the sum of all positive zero crossings
into the EEG segment

8. Mean Absolute Deviation:

The  robustness  of  the  collected  quantitative  data  can  be
calculated  by  MAD  (Mean  Absolute  Deviation).  In  other
words, it is the average distance between each data point and
the mean. For a given dataset, x = x1, x2, … xn, MAD can be
calculated as [38]:

9. Entropy:

This  feature  is  employed  to  quantify  the  degree  of
uncertainty  and  irregularity  of  a  signal  as  well  as  the
complexity of human brain dynamics. The uncertainty of the
signal  can  be  computed  in  terms  of  the  repeatability  of  its
amplitude [38]:

Where P(x) is the probability mass function

10. Hjorth mobility:

The Hjorth mobility parameter represents the square root
of  the  variance  of  the  first  derivative  of  the  signal,  and  it  is
proportional to the standard deviation of the power spectrum of
a time series.

In  the  above  equation,  x(t)  is  a  signal  and  x’(t)  its
derivative.  var(-)  is  the  variance of  a  signal  over  a  period of
time.

11. Hjorth complexity:

The Hjorth complexity defines how the shape of a signal is
analogous  to  an  ideal  sine  curve.  This  parameter  gives  an
estimation  of  the  bandwidth  of  the  signal.

Complexity = mobility (x'(t)) / mobility (x(t))

One  can  have  an  estimation  of  the  second  and  fourth
statistical  moment  of  the  power  spectrum  in  the  frequency
domain  by  employing  the  mobility  and  complexity,
correspondingly.  While  Hjorth  parameters  are  identified  in
time-domain, they can be useful for both time and frequency
analysis.  Interestingly,  computation of  the Hjorth parameters
stands  on  variance,  then  the  cost  of  their  computation  is
significantly  low  [87,  99,  100].
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12. Coefficient of Variation:

The  coefficient  of  variation  (CoV)  is  a  measure  is  the
division of the standard deviation to the mean of a signal [99]:

13. Root Mean Square:

The  Root  Mean  Square  (RMS)  of  a  signal  can  be
calculated  as  [30]:

14. Maximum linear cross-correlation:

As  a  simple  bivariate  measure,  MAX  cross-correlation
calculates  the  linear  association  between  two  signals,  which
also  yields  fixed  delays  between  two  spatially  distant  EEG
signals  to  accommodate  potential  signal  propagation.  This
measure  can  also  give  us  a  similarity  between  two  different
channels.

Given  an  EEG  signal  containing  N  channels,  one  can
compute the cross-correlation on  pairs of channels (e.g.
15 pairs for N=6 for the employed iEEG database). Calculating
the MAX cross correlation for six channels results in a 90-D
vector.

15. Autoregressive (AR) model:

A  sequence  of  observations  ordered  in  time  or  space  is
called time-series and, in the electrical engineering context, is
titled as signal.  An AR model can be described by modeling
the existing value of the variable as a weighted sum of its own
preceding  values.  Similarly,  one  can  employ  this  concept  to
forecast the future based on past behavior [101–103].

An  AR  model  with  order  p  can  be  described  as  the

following  formula:

where εt is the error term, usually specified as white noise
and β= (β1, β2,…, βp) is the AR coefficients.

For  a  first  order,  an  AR(1)  model  can  be  expressed  as
[102–104]:

and its process can be considered as a stationary process
once  |β1|<1.  The  coefficient  and  the  error  term  have  been
considered as features in the prediction of the seizure [35, 87,
105].

Appendix B

The  Freiburg  EEG  Database  is  one  of  the  most  cited
resources  employed in  predicting and detecting experiments.
The  interictal  and  preictal  intracranial  electroencephalogram
(iEEG)  recordings  of  the  Freiburg  database  (FSPEEG)  was
offered  in  the  early  2000s  as  an  EEG  database  [34].  The
database  consists  of  intracerebral  (strips,  grid  and  depth
electrodes)  EEG  recordings  from  21  epileptic  patients.  It
contains  six  intracranial  electroencephalography  (iEEG)
electrodes with a sampling frequency of 256 Hz and a 16-bit
A/D converter.

The  database  contains  24  hours  of  continuous  and
discontinuous  interictal  recordings  for  13  patients  and  eight
patients,  respectively.  Each  participant  had  2  to  5  preictal
recordings  with  about  50  minutes’  preictal  recordings.  This
database contained 582 hours of EEG data, including preictal
recordings of 88 seizures.

An overview of recruited patients is inserted in Table (9).
Note that 50 seizures have been employed from 12 patients in
this study (mean age: 31; age range: 14-50; both gender).

Table 9. The information of patients in the dataset. SP = simple partial, CP = complex partial, GTC = generalized tonic-
clonic; H = hippocampal origin, NC = neocortical origin; d = depth electrode, g = grid electrode, s = strip electrode.

Patient# Sex Age Seizure type H/NC Origin Electrodes Seizures analyzed
1 F 15 SP, CP NC Frontal g, s 4
2 M 38 SP, CP, GTC H Temporal d 3
3 M 14 SP, CP NC Frontal g, s 5
4 F 26 SP, CP, GTC H Temporal d, g, s 5
5 F 16 SP, CP, GTC NC Frontal g, s 5
7 F 42 SP, CP, GTC H Temporal d 3
8 F 32 SP, CP NC Frontal g, s 2
10 M 47 SP, CP, GTC H Temporal d 5
12 F 42 SP, CP, GTC H Temporal d, g, s 4
16 F 50 SP,CP, GTC H Temporal d, s 5
18 F 25 SP, CP NC Frontal s 5
19 F 28 SP, CP, GTC NC Frontal s 4
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