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Abstract:

Background:

The sleep quality prediction has implications beyond trivial. It enables the holistic management of the clinical ramifications of treating sleep
disorders, which include providing a foundational framework for mitigating sleep medication abuse and sleep medication dosage control due to the
foreknowledge of the quality of a future sleep episode. Sleep Quality (SQ) is presented as a function of sleep stages and as such, predicting sleep
quality will involve predicting the future realization of a sleep episode in terms of transition between different sleep stages. Electrocardiograms
(ECG) provided by the National Sleep Research Resource (NSRR) are analyzed and a Sleep Quality (SQ) value is predicted on an interval (0,1).

Methods:

This research uses Support  Vector Machines (SVM) and a polynomial regression model to forecast  the Sleep Quality (SQ) of a future sleep
episode. The statistical learning models are trained on the features extracted from the Electrocardiograms (ECG) signals in the training set. The
datasets are composed of ECG signal from patients in the NSSR Sleep Health Heart Study (SHHS).

Results:

A confusion  matrix  comparing  measured  vs.  predicted  is  presented  as  a  measure  of  the  performance  of  the  SVM sleep  stage  as  well  as  the
comparison of the observed vs. predicted hypnogram in some cases. The Sleep Quality (SQ) values derived from classified forecasted PSD is
compared with the measured Sleep Quality (SQ) values. Finally, a paired t-test is used to compare the predicted Sleep Quality (SQ) with the
measured Sleep Quality (SQ) to determine if the difference between the two sets is significant.

Conclusion:

This research presents a simple method to forecast Sleep Quality (SQ) values. Consequently, it can be used to establish a personal Sleep Quality
(SQ) history for clinical diagnosis and treatment.

Keywords:  Support  vector  machines,  Sleep  data  analysis,  Sleep  quality  prediction,  Sleep  Quality  (SQ),  Sleep  health  heart  study,
Electrocardiograms.
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1. INTRODUCTION

The  definition  of  sleep  quality  that  encompasses  the
ramifications  of  its  implications  is  hard  to  achieve  given  its
subjective nature. It is like describing “sweetness”; the descrip-
tion  is  based on a  subjective  personal  history  of  exposure  to
“sweet”  things.  However,  despite  the  variance  of  the  actual
manifestation,  sleep quality  can be generally  regarded as  the
relative amount of satisfaction derived from a sleep episode.

*  Address  correspondence  to  this  author  at  the  Department  of  Industrial,
Manufacturing and Systems Engineering, Texas Tech University, Lubbock, TX,
USA; Tel: +1-310-999-5809; E-mail: tosinogundare@hotmail.com

In some research, sleep quality is defined in terms of the
subjective Pittsburgh Sleep Quality Index (PSQI) as  a  statis-
tical measure introduced by Buysse et al. in 1988 [1] and has
now taken on a life of its own in the different localized varia -
tions  such  as  the  “Persian  PSQI”,  “Hungarian  PSQI  (PSQI-
HUN)”, “Korean PSQI (PSQI-K)” and other non-distinct mor-
phological variants [2, 3].

In introducing the Pittsburgh Sleep Quality Index (PSQI),
Buysse  et  al.,  cited  the  difficulty  of  establishing  a  general
definition of “sleep quality” which has qualitative aspects. This
is because qualitative aspects of sleep are hard to quantify, for
example, “restfulness”. In fact, one might argue that qualitative
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factors  like  “restfulness”  are  equally  as  important  as  quanti-
tative factors like “sleep duration”, “number of interruptions”
etc. in the perception of sleep quality.

The  PSQI  was  also  motivated  by  the  need  for  a  formal
taxonomy in sleep quality research that captures both statistical
and  clinical  factors.  The  PSQI  is  a  score  derived  from  the
answers  to  19-questions  in  a  sleep  questionnaire  [4].  PSQI,
however, has not been rigorously adopted as a standard by the
mainstream  even  though  it  has  been  the  subject  of  many
research publications given the amount of citations. The reason
is not far-fetched, while the PSQI is groundbreaking from an
ontological viewpoint. It is not a significant improvement from
what was already in use in mainstream sleep medicine, i.e. the
use  of  questionnaires  to  establish  sleep  history.  Although  in
scientific  research,  there  has  been reliance  on  questionnaires
when studying phenomenon strongly  correlated with  behavi-
oral  or  individual  patterns,  in  many  clinical  applications,
precision is a principal criterion. This criterion excludes data
based  solely  on  the  ability  of  the  subject  to  remember  accu-
rately  and  understand  questions  correctly.  The  exclusion  of
data  gathered  in  this  manner  is  due  to  its  highly  subjective
nature  which  makes  generalization  difficult.  Furthermore,
varying subjectivity does not foster further development in the
ontology  of  sleep  research  and  consequently  limits  its
usefulness in enabling emerging technologies in the 21st  cen-
tury.

For  considerable  progress  to  be  made  in  sleep  research,
there is a need for more reliable and externally valid data sour-
ces which can be used to develop various statistical models in
cadence  with  technology  trends.  This  research  will  lean
towards a rather vague but more clinically acceptable definition
of  sleep quality  given by the Encyclopedia  of  Pharmacology
which views Sleep Quality (SQ) as the outcome of polysomno-
graphy [5].  Subsequently,  an  ensemble  of  statistical  learning
models  that  collaborate  to  predict  Sleep  Quality  (SQ)  from
polysomnography is presented.

2. MATERIALS AND METHODS

2.1. Sleep Episode Identification
Heart Rate Variability (HRV) will be used to differentiate

between the parasympathetic and sympathetic nervous system
within the Autonomous Nervous System (ANS). The adopted
method  relies  on  the  research  by  Hon  et  al.  (1963)  [6]  that
revealed that Heart Rate Variability (HRV) delineates specific
ANS activity.

A frequency domain analysis of the RR time series using
Fourier transforms  for the  power spectral  analysis  identifies
a  period of  decreased heart  rate  as the  range of  epochs with
LF  /HF  <  1  are  also  selected  as  the  epochs  within  a  sleep
episode.  A  Support  Vector  Machine  (SVM)  model  is  de-
veloped  to  identify  different  sleep  stages  based  on  the
information from the Fast Fourier Transform (FFT) of the RR
series.

As mentioned, the RR interval series is transformed using
Fourier Transform (FFT)

(1)
Where:

N = Number of samples in the time domain

n = Current number of samples considered

X(n) = Value of the signal when t = n

The magnitude of the signal is then calculated as follows

(2)

The  power  P(k)  at  X(k)  is  taken  as  the  square  of  the
magnitude

(3)

The frequency at X(k) is taken as

(4)

Fs is the sampling frequency.

k is the current frequency bin.

Fig.  (1)  shows  the  power  spectral  from  the  Fast  Fourier
Transform (FFT) of 10000 seconds of an ECG signal derived
from  Polysomnography  records  from  the  National  Sleep
Research  Resource  (NSSR),  Dean  et  al.,  (2016)  below:

2.2.  The  Support  Vector  Machine  (SVM)  Sleep  Stage
Classifier

As mentioned earlier, the RR sequence or the beat to beat
interval  data  goes  through  a  classification  stage.  A  support
vector machine is used to classify the RR interval data into 6
possible stages.

0 – wake

1 – Stage 1 Sleep

2 – Stage 2 Sleep

3 – Stage 3 Sleep

4 – Stage 4 Seep

5 – REM Sleep (The dataset used in the training set assigns
5 to REM sleep)

After the Fast Fourier Transform (FFT) of the RR series,
the  original  time  domain  signal  is  transformed  into  the
frequency domain and every element or point in the RR seq-
uence now has two attributes viz. “power” and “frequency”.

P is a 2 X 1 vector of the mean power and mean frequency
in an epoch. Simply put,

P1 = power

P2 = frequency

The  general  multi-class  support  vector  machine  as  des-
cribed by Weston et al., (1998) has formed dual formulation.

  (5)
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Fig. (1). Power spectral of HRV Fluctuations.

with constraints

(6)

This gives the decision function:

(7)

In practice, when working with Support Vector Machines
(SVM) on problems with non-linear decision boundaries, the
dual problem is preferred over the primal problem because the
dual problem uses the dot product of the support vector and the
actual input vector which is very valuable when using a kernel
for  finding  support  vectors  on  the  separating  hyperplane  in
higher  dimensions  especially  for  non-linear  decision  boun-
daries as is  the case of the dataset  used in this research.  The
kernel  method  is  used  which  maps  the  dataset  into  higher
dimensional  feature  space  where  the  data  becomes  linearly
separable and a linear classifier can be learned and applied.

Scholkopf et al., (1997) suggested that the SVM with Gau-
ssian kernels were as good or better than the traditional Radial
Basis Function (RBF) classifiers.

An SVM model has a simplified form given below:

(8)

(9)

Gaussian Function SVM is given below:

(10)

The learning algorithm is given as:

(11)

Table 1 below shows the out-of-sample performance for a
test  sample  drawn  from the  test  set  to  illustrate  the  use  of  a
confusion matrix in the overall results section. The confusion
matrix summarizes the performance of the classifier for every
sleep stage. In the results section, a general accuracy percen-
tage  is  presented,  which  is  a  measure  of  the  misclassified
model  output  to  the  total  model  output.

2.2.1. Sleep Stage Identification

The  succeeding  step  to  sleep  episode  identification  is  to
decompose  a  sleep  sequence  into  the  prevailing  sleep  stage
classification.  Every  epoch  will  inherit  a  “sleep  label”
annotation  which  will  vary  from  1  through  5.  According  to
Busek et al., (2005) [7], the minimum values for LF/HF ratio
are recorded at stage 1 and the maximum values at Slow Wave
Sleep  (SWS)  are  recorded  at  stage  5.  In  practice,  the  values
observed in later stages are closer to 1 which is a result of the
vagal parasympathetic activity. In a more general sense, sleep
stages are identified by the consistent decrease or increase in
LF/HF ratio progressively through the sleep stages [8].

In  this  research,  this  relationship  is  learned  by  feeding
classified data to a multi-class Support Vector Machine descri-
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Table 1. Confusion Matrix for RR series classified into corresponding sleep stages.

Predicted|Actual 0 1 2 3 4 5
0 938 0 164 0 0 36
1 67 0 8 0 0 0
2 112 0 1973 82 0 13
3 6 0 77 1219 0 3
4 0 0 0 0 0 0
5 0 0 3 2 0 295

Table  2.  Sample  Sleep  EDF  showing  Sleep  Stage  Transi-
tions for approximately 2,640 secs.

- Sleep Stage Time Elapsed in Seconds
1 0 0
2 1 840
3 2 870
4 0 960
5 1 990
6 2 1,020
7 3 1,290
8 2 1,410
9 3 1,440
10 0 1,560
11 2 1,590
12 3 1,710
13 2 1,740
14 3 2,010
15 2 2,070
16 3 2,250
17 2 2,640

bed  prior  and  used  repeatedly  to  classify  “sleep”  data  into
various stages as well as the trivial separation of “sleep” data
from “wake” data.

2.3. SLEEP QUALITY ANALYSIS
The  initial  sleep  quality  analysis  will  assume  two  basic

classes:

Sufficient[1]
Poor[2]

The  determination  of  the  categories  derives  from  the
baseline by William et al., (1964) which shows a percentage of
time spent in the 4 sleep stages by normal subjects.

Stage 1: 0.36% - 16.7%

Stage 2: 34.6% - 60.2%

Stage 3(3a): 2.5% - 15.3%

Stage 4 (3b): 4.5% - 23.5%

Stage 5 (REM): 14.4% - 29.9%

3a originally refers to 3 and 3b refers to 4, since the amalg-
tween the sleep stages and the overall elapsed time foramation
of these stages by the American Academy of Sleep Medicine
[9].

As  an  illustration,  Table  2  below  presents  a  hypnogram
data  extracted  from  a  sleep  annotations  file  from  the  Sleep
Heart Health Study (SHHS) dataset provided by the National
Sleep Research Resource (NSSR). Table 2 shows a transition
between  the  sleep  stages  and  the  overall  elapsed  time  for
approximately  the  first  2,640  seconds.

Figs. (2) & (3) show the sleep hypnogram associated with
Table 2, with the latter emphasizing sleep stage transitions.

Generally,  Stage  3,  4  and  Rapid  Eye  Movement  (REM)
sleep stages are clinically regarded as the most restful and most
restorative  period  of  a  sleep  episode.  The  sleep  quality
expressed  in  this  study  is  an  expanded  form  of  DSEI  (Delta
Sleep-wave  Efficiency  Index)  introduced  by  Bsoul  et  al.,
(2010)  [10].

Rapid Eye Movement (REM) sleep is especially important
for  committing  emotional  information  to  long  term  memory
and  maintain  core  body  temperature  according  to  Wagner  et
al., (2001) [11] and Charles et al., (1980) [12]. Therefore, the
ensuing formulae account for REM sleep as an important factor
in assessing Sleep Quality (SQ).

Therefore,

(12)

2.4. Experiment Design

Fig.  (4)  captures  the  overall  methodology.  An  informal
mathematical  notion  of  sleep  quality  (SQ)  prediction  is
presented  subsequently.

2.4.1.  Sleep  Quality  Prediction  from  extrapolated  (Power,
Frequency) pairs

Let  S,  be  a  random  variable  that  encapsulates  the  sleep
stages {3, 4, REM (5)}

Therefore, Sleep Quality (SQ) can be succinctly described
as follows,

Suppose a random variable S encapsulates the sleep stages
{3, 4, REM (5)} and a function H, such that

Sleep Quality (SQ) = DSEI + 
∑ [S𝑖=REM ]𝑛

𝑖=0

𝑛
 

SQ = 
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Fig. (2). Hypnogram showing sleep stage transitions with time (seconds).

Fig. (3). Hypnogram with an emphasis on sleep stage transitions in time.

Where g, l are the extrapolating functions given as follows:

The function H is a regression function that relates a Sleep
Stage ‘S’ to a (power, frequency) pair.

This regression function can be used iteratively to classify
a sequence of extrapolated (predicted) (power, frequency) pairs
into their corresponding sleep stages.

The regression function H is learned by a support  vector
machine.

2.4.2. Forecasting/Extrapolating (Power, Frequency) pairs

2.4.2.1. Frequency

The frequency contained in every bin after Fourier trans-
form is a multiple of the frequency resolution and is given by

In the ideal case, this is a function of the characteristics of
the input signal. However, suppose that Fk  is a finite random
variable over a set of real numbers and that Fk+1 is related to Fk

by a linear function g(Fk).

Such that,

and

Generally,  the  frequency  at  successive  frequency  bin  is
given as follows:
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Fig. (4). Diagram depicting the overall experiment design.

2.4.2.2. Power

Suppose  Po  and  Ps  are  shifted  versions  of  the  power
sequence  P,  such  that;

then,

The predicted power spectrum  is modeled as by cubic
polynomial of Ps such that, for a point Pk in Po, there is a point
Pk-1 in Ps where,

The regression coefficients are estimated using polynomial
least squares.

3. RESULTS

Predicting  Sleep  Quality  (SQ)  requires  the  ability  to
forecast future inputs for the “sleep stage” classification model
since Sleep Quality (SQ) is a function of the time spent in the
sleep stages. The higher the amount of time spent in stage 3-5,
the  higher  the  SQ value.  The  goal  is  to  demonstrate  that  the
power spectrum derived from the ECG signal of an individual
can  be  learned  by  a  regression  model  and  used  to  forecast
future  trends  which  are  then  classified  by  a  Support  Vector
Machine (SVM) model and evaluated as a Sleep Quality (SQ)
value using the equation below:

An  intuitive  way  of  conceptualizing  the  SQ  formulae  is
that it is a function from the predicted sleep hypnogram (or the
corresponding  confusion  matrix)  to  the  real  numbers.  A
summary of the performance of the SVM model for all data in
the test set is presented in the confusion matrix in Table 3.

Table 3. Aggregate confusion matrix for test set of 103 patients.

Predicted|Actual 0 1 2 3 4 5
0 192844 512 13675 2026 56 861
1 4044 2096 5738 823 17 713
2 8069 336 135360 10279 241 994
3 1027 19 13206 73344 635 69
4 129 0 304 3723 4505 30
5 415 37 4469 245 6 21690

    𝑷𝑜 =  {𝑃1, 𝑃2, . . . , 𝑃𝑛−1} 

𝑷𝒔 =  {𝑃2, 𝑃3,. . . , 𝑃𝑛} 

𝑷𝒐 = ℎ (𝑷𝒔 ) +  𝜀 

𝑃𝑘 = 𝛽0 + 𝛽1𝑃𝑘−1 +  𝛽2𝑃𝑘−1
2 +

𝛽3𝑃𝑘−1
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The  confusion  matrix  in  Table  3  represents  the  overall
result of the classification performed for all 100 patients in the
test set. The rows represent the distribution of the predictions
in  the  different  sleep  stages  in  cadence  with  the  actual
observations which are in the columns. For examples, row 0,
column 0 translates to the total amount of points predicted or
classified  to  be  stage  0  “Awake”  that  is  actually  stage  0.
Similarly,  row  0,  column  1  translates  to  the  total  amount  of
points  classified  to  be  stage  0  that  is  actually  stage  1.  The
number in each cell represents the total for the entire test set.
Mathematically, each cell is calculated as follows:

Where 0 ≤ i ≤ 5
0 ≤ j ≤ 5,  N = cardinality of test set
The  average  performance  characteristics  are  reported  as

follows:

Average SVM Accuracy in the test set 85%

To  determine  the  accuracy,  the  number  of  correctly
classified  points  are  determined  by  checking  the  predicted
sleep  stages  and  wake  stage  against  the  actual  stages  in  the
clinical  annotations.  As  such,  for  every  sample  patient,  the
accuracy  of  the  classified  wake  stage  and  sleep  stages  is
evaluated  as  follows:

For  all  in  a  set  of  predictions,  and  in  a  set  of  actual
measured  observation,

where:
N = cardinality of test set.
Similarly,  a  statistic  for  the  overall  performance  of  the

polynomial regression model is presented as follows:

Average adjusted R2 for polynomial regression = 0.61

For every sample patient in the test set, a reference point in
the  wake  cycle  is  selected,  the  sleep  onset  latency  is
determined by predicting Time to Sleep (TTS) and it is added
to  a  target  length  of  sleep  episode  (sleep  time)  which  is
extracted from the clinical annotations, which varies for each
patient. The polynomial regression model is then used to model
the  ideal  progression  of  the  power  spectrum.  The  R2  is
computed  to  determine  the  fit  of  the  prediction  to  the  actual
model  and  then  adjusted  for  the  number  of  estimators  or
predictors,  which  in  this  case  is  3.  The  average  value  of  the
adjusted R2 is calculated as follows for all patients:

where: N = cardinality of test set
After  the  forecasted  power  spectrum  is  classified  by  the

SVM  model,  the  Sleep  Quality  (SQ)  formula  which  can  be
conceived as a function from the predicted sleep hypnogram to
the  set  of  real  numbers,  is  used  to  determine  a  score  on  the
interval (0,1), with 0 meaning poor sleep quality and 1 meaning

best sleep quality. The overall R2 for Sleep Quality (SQ) for all
the patients in the test set is approximately 0.9. This is largely
in part to the symmetry of misclassification and the evaluation
of  Sleep Quality  (SQ) focuses  on the transitions  in  the  sleep
hypnogram that involves only stage 3, 4 and 5.

Furthermore,  in  Table  3  which  summarizes  the  SVM
performance for the whole experiment, the misclassifications
distributed within  stage  0,  1,  2  for  both  predicted  and actual
values  will  have  no  impact  of  the  final  computation  of  the
Sleep Quality (SQ) values because stages 0, 1, 2 are unused in
the  Sleep  Quality  (SQ)  equation.  Also,  the  symmetry  of  the
mistake in classifying Stage 2 and 3 improves the outcome, i.e.
10279 actual stage 3 points were misclassified as stage 2 but
13206 actual stage 2 points were also misclassified as stage 3.
This results in an offsetting behavior in the Sleep Quality (SQ)
equation that focuses on the total time spent in stages 3, 4, 5
and not their exact distribution. It is worthy of mentioning that
the  85%  test  set  accuracy  for  the  SVM  model  is  directly
influenced by the quality of the forecasted power spectrum by
polynomial  regression.  Considering  the  average  R2  is  0.61,
meaning  only  61%  of  the  variation  in  the  true  model  is
explained,  SVM  intrinsic  behavior  of  finding  a  separating
hyperplane  that  maximizes  the  margin  between  classes  was
invaluable  in  achieving  the  reported  accuracy  and  also
responsible  for  the  near-symmetric  misclassification  on  the
border classes of stage 2 and 3. Intuitively, this makes sense,
since stage 3 and above is considered, then there is an implicit
boundary line between stage 2 and 3. In a typical modal,  we
expect that the probability of predicting stage 3 when is 2 is the
same  as  the  probability  of  predicting  stage  2  when  it  is  3.
Informally,  we  conceive  the  error  as  being  normally
distributed. In this case, however, there is a slight bias towards
stage 3 at the boundary.

Fig. (5) represents a plot of the overall Sleep Quality (SQ)
model for all patients in the test set. It is obtained by plotting
actual  Sleep  Quality  (SQ)  values  computed  from  clinical
annotations  against  the  Sleep  Quality  (SQ)  values  from  the
predicted hypnogram. Recall, that the Sleep Quality formula, is
a function from the predicted sleep hypnogram to the interval
(0,  1)  and  as  a  result,  the  values  computed  from  clinical
annotations  as  well  as  predicted  by  the  Sleep  Quality  (SQ)
model are consistently between 0 and 1. Although, an informal
notion  can  be  introduced  to  view  computed  SQ  values  as
probabilities if the outcome is viewed like a Bernoulli trial with
binary  realizations  {good  sleep,  bad  sleep},  SQ  values  are
actually  a  measure  of  the  goodness  or  quality  of  a  sleep
episode,  with  1  being  the  best  sleep  possible  [9,  13,  14].

CONCLUSION

As  mentioned  earlier,  the  Sleep  Quality  (SQ)  model  is
influenced  principally  by  the  correctness  of  the  forecasted
future HRV power spectrum under the current methodology. It
follows, therefore, that the general usefulness of the presented
approach would depend on the ability of the learning model to
generalize  over  a  set  of  different  sleep  patterns  under  the
presumption  that  these  patterns  are  influenced  by  daily
physiological experiences and that most individuals have finite
distinct observable physiological experiences. There is  also  an
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Fig. (5). Overall SQ predictive model performance [9].

assumption  that  the  observed  physiological  patterns  of  other
individuals  would  account  for  the  variations  possible  in  a
single  individual.

It is no surprise that the result is a mixed bag, ranging from
a good fit to wide deviations from the true underlying model.
However,  in  many  cases,  the  performance  of  the  model
provides  a  fair  replica  of  the  true  underlying  Sleep  Quality
(SQ) model.

Industrial or mainstream adoption might benefit significan-
tly  from  a  calibration  step,  which  will  enable  pre-trained
models to learn the “Wake-Sleep” behavior of the host patient.
However,  since  the  quality  of  ECG  recordings  from  many
ambulatory ECG devices is noisy, real-time signal processing
and  data  preprocessing  for  continuous  training  might  be
challenging.
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