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Abstract:  Human Pluripotent  Stem Cells  (PSCs) are a valuable cell  type that  has a wide range of biomedical  applications because they can
differentiate into many types of adult somatic cell. Numerous studies have examined the clinical applications of PSCs. However, several factors
such as bioreactor design, mechanical stress, and the physiological environment have not been optimized. These factors can significantly alter the
pluripotency and proliferation properties of the cells, which are important for the mass production of PSCs. Nutritional mass transfer and oxygen
transfer must be effectively maintained to obtain a high yield. Various culture systems are currently available for optimum cell propagation by
maintaining the physiological conditions necessary for cell cultivation. Each type of culture system using a different configuration with various
advantages and disadvantages affecting the mechanical conditions in the bioreactor, such as shear stress. These factors make it difficult to preserve
the cellular viability and pluripotency of PSCs. Additional limitations of the culture system for PSCs must also be identified and overcome to
maintain the culture conditions and enable large-scale expansion and differentiation of PSCs. This review describes the different physiological
conditions in the various culture systems and recent developments in culture technology for PSC expansion and differentiation.
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1. INTRODUCTION

Human Pluripotent Stem Cells (PSCs) exhibits decent self-
renewal  and  differentiation  capability  into  various  cell  types
consisted of the human body. They show remarkable promise
for  clinical  applications  and  novel  strategies  in  regenerative
medicine, drug discovery, and in vitro toxicology for clinical
and industrial purposes. The target organs of these technologies
vary widely from small organs such as retinal tissue [1] to large
organs such as the heart [2], pancreas [3], and liver [4].

For  all  of  these  applications,  a  sufficient  quality  and
quantity  of  PSCs  are  needed,  which  can  be  generated  in
scalable three dimensional (3D) culture system that supports a
larger density of cell culture and higher growth rate with good
manufacturing  practice-compatible,  simple,  and  easy  to
automate  [5  -  8].  Although  numerous  research  groups  have
attempted to develop optimum culture systems for PSCs, the
currently available culture systems show some limitations, such
as difficulties  in scaling  up, automation,  and standardization.
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Therefore,  the  effectiveness  of  these  scalable  culture  tech-
nology  for  PSC  expansion  and  differentiation  must  be
improved.

Here,  we  introduce  the  advantages  and  remaining  disad-
vantages of various culture systems for PSCs mass production
and  differentiation.  In  addition,  we  describe  the  important
microenvironmental  conditions  required  to  optimize  PSCs
mass production systems development as a consideration when
selecting, combining, or modifying various culture systems.

2. PLURIPOTENT STEM CELL TYPES

Generally, PSCs can be derived from embryonic or adult
tissue and are classified as  Embryonic Stem Cells  (ESCs) or
induced Pluripotent Stem Cells (iPSCs), respectively.

ESCs  were  firstly  isolated  from  the  inner  cell  mass  of
blastocysts  by  Thomson  et  al.  in  1998  [9].  ESCs  have  some
disadvantages,  such  as  the  requirement  to  extract  and
manipulate  the  embryo,  which  is  limited  by  ethical
considerations. In clinical use, because ESCs are derived from
embryonic  stage  cells,  it  is  more  difficult  to  obtain
immunocompatible cells for transplantation. This increases the
risk  of  immune  rejection  in  allogeneic  transplantation.  To
overcome  this  limitation,  immunosuppression  or  immuno-
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isolation  such  as  encapsulation  is  necessary  when  ESCs  are
administered  into  a  recipient’s  body.  These  techniques  have
been  applied  in  some  clinical  trials,  such  as  to  encapsulate
insulin-producing  cells  from  human  ESCs  during  pancreatic
regeneration [10].

iPSCs were firstly generated by Yamanaka et al. in 2006
[11,  12].  Adult  somatic  cells  were  reprogrammed  into
pluripotent cells by overexpressing transcription factors Oct4,
Sox2, Klf- 4 and c-Myc via transfection into human fibroblasts
[13  -  14].  This  achievement  is  very  promising  for  both
regenerative medicine and industrial-related applications such
as drug screening. iPSCs not only show similar characteristics
such  as  remarkable  pluripotency  to  ESCs  but  also  present
minimum  ethical  issues  such  as  those  involving  embryo
destruction  for  ESCs  [5,  15,  16].  Moreover,  this  technology
provides the opportunity to generate iPSCs from patients via
tissue biopsy, which may minimize immune rejection by using
autologous  transplantation.  In  contrast,  this  reprogramming
technology  also  has  drawbacks.  The  integration  of  the
transcription factor into cells genome can cause an unwanted
effect. For instance, the insertion of proto-oncogene like c-myc
increases the risk of tumor formation [17]. Currently, numerous
studies  were  attempted  to  resolve  this  problem  with  non-
integrating  methods  [17  -  25].  However,  most  of  the  results
show a  lack of  reprogramming efficiency when compared to
integrating methods.

3. DEVELOPMENT OF PSCs CULTURE

The first method for the large-scale production of animal
cells was developed for baby hamster kidney cells by Capstick
et al. in 1962 [26, 27]. This technology has been applied to a
broad  range  of  biological  products,  such  as  monoclonal
antibodies,  hormones,  vaccines,  and  other  pharmaceutical
products  [28].  In  PSC  cultivation,  the  purpose  of  mass
production is to prepare a large number of cells for industrial
and clinical use. For example, pancreatic islet transplantation

requires  at  least  6  ×  108  beta  cells  which  derived  from  an
approximately 0.6 m2 of culture area; this corresponds to 600
6-well plates [29]. To regenerate 30% of liver tissue, 6 × 1010

liver  cells  are  required,  covering  60  m2  of  culture  area  or
60,000 6-well plates [30]. To obtain the high-quality cells for
these  applications,  it  is  important  to  sustain  the  self-renewal
properties,  maintain  the  pluripotency,  and  provide  cryopre-
servation  to  maintain  established  cultures  by  using  proper
microenvironment  for  cell  growth  [31].

Selection of the culture system for PSCs largely depends
on their cellular characteristic during cultivation (Table 1). In
all  culture  methods,  a  single  hPSC  is  known  to  undergo
apoptosis  without  Rho-associated  protein  kinase  (ROCK)
inhibition.  These  conditions  are  thought  to  be  caused  by
anoikis,  the  apoptosis  mechanism  induced  by  a  lack  or
alteration  of  cell-cell  or  cell-matrix  interactions  [32].  When
hPSCs dissociated into single cells,  the loss of  E-cadherin,  a
key molecule in intercellular adhesion, can activate the ROCK-
dependent signaling cascade to induce myosin hyperactivation.
These  cascades  can  increase  myosin  contraction,  impacting
cellular  vulnerability  and  causing  apoptosis  [33  -  35].  Thus,
hPSCs  are  typically  seeded  as  clusters  or  single  cells  with
ROCK  inhibitors  such  as  Y-27632  and  HA-1077  [36,  37].
Adherent culture is the most widely used method for culturing
undifferentiated PSCs. However, they can also be cultured in
suspension as single cells or aggregates [38].

The  extracellular  signaling  is  also  important  to  maintain
the  state  of  pluripotency.  Several  study  revealed  several
signaling molecule such as Transforming Growth Factor beta 1
(TGF-β1) [39, 40], activin A [39, 41, 42], bone morphogenetic
protein  4  (BMP-4)  [43,  44],  Fibroblast  Growth  Factor  2
(FGF2) [45], Leukemia Inhibitory Factor (LIF) [43], and Nodal
[39, 46]. In order to provide the required amount to keep their
self-renewal, these molecules were regularly supplemented in
the culture medium.

Table 1. Possible combined culture techniques in various PSCs culture systems.

PSCs Type Possible Combined Culture Technique

Adherent

Static Culture Systems Automation

Hollow fiber bioreactor
Scaffold
Perfusion

Automation

Stirred culture systems

Microcarrier
Cell encapsulation

Perfusion
Automation

Rotary culture systems

Microcarrier
Cell encapsulation

Perfusion
Automation

Suspension

Stirred culture systems

Aggregates culture
Cell encapsulation

Perfusion
Automation

Rotary culture systems

Aggregates culture
Cell encapsulation

Perfusion
Automation
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3.1. Adherent Culture Methods

Adherent  culture  is  the  most  widely  used  cell  culture
method  for  biological  studies.  For  adherent  PSCs,  the  inter-
actions between PSCs and feeder cells are essentially required
to provide support, such as producing secreted growth factor,
expressing specific ligands, releasing cytokine, and providing
the  cell-cell  interaction  for  stable  attachment  which  is
important for the cell growth and pluripotency [47, 48]. Several
proteins which required for maintaining the pluripotency, such
as Transforming Growth Factor beta 1 (TGF-β1) [49], activin
A [49], bone morphogenetic protein (BMP)-4 [49], Fibroblast
growth factor 2 (FGF2) [49], and Wnt-3 [50] were secreted by
the feeder cells.

Inactivated mouse embryonic fibroblasts are traditionally
used as a supportive feeder layer to sustain hPSC propagation
[15, 51, 52]. However, co-culturing PSCs with animal feeder
cells  present  the  transmission  of  unwanted  genes,  viral
contaminations, or immunogenic nonhuman saccharides such
as sialic acid [53], as well as variability in experimental results
[54].  To  overcome  these  limitations,  many  studies  have
developed  xeno-free  human  feeder  cells,  such  as  human
foreskin  fibroblasts  [49,  55,  56]  human  adipose-derived
stromal cells [57, 58], amniotic epithelial cells [59, 60], fetal
skin  cells  [61,  62],  and  amniotic  Mesenchymal  Stem  Cells
(MSCs)  [63].  Autologous  adult  human  fibroblasts  are
preferably used as feeder cells in clinical applications because
they  minimize  xenogeneic  substances  from  animals  and  are
easy to obtain. Moreover, human PSCs can be generated from
isogenic  parental  cells  as  feeder  cells,  and  thus  the  compat-
ibility  of  cell-cell  interactions  can be better  maintained [64].
However, maintenance in the culture systems using feeder cells
is costly and time-consuming.

Therefore, in large-scale culture, the application of feeder
layer  can  be  eliminated  to  obtain  a  higher  yield  and  reduce
production  costs  [65].  Alternatively,   feeder   cells  can   be
 replaced   with  a   conditioned   medium  and   Extracellular
Matrix  (  ECM),  such  as   Matrigel  [66],  fibronectin  [66],
laminin  [67  -  69],  and  vitronectin  [70],  which  are  normally
produced by feeder cells to maintain the PSCs in culture. The
medium consists of non-xenogeneic compounds that are also
essentially required for the propagation and differentiation of
hPSCs  used  in  clinical  applications.  In  addition,  the  growth
factor  such  as  such  as  activin  A,  TGF-β1,  FGF2,  Insulin,
Transferrin, and Nodal also added in the medium formulation
to support the proliferation and reconstitute its production from
the feeder cells [70]. Currently, feeder cell-conditioned media
or  commercially  available  synthetic  media  for  feeder-free
culture have been used for PSCs culture. Media selection varies
depending on the cell  type and  it is  necessary to  optimize
 the  media   conditions  for   different   culture   methods   and
 cells  [7, 71, 72].

To  harvest  PSCs,  the  conventional  adherent  method
requires cell removal by mechanical or enzymatic separation,
which may damage the cells and affect the quality and quantity
of mass-produced PSCs [73]. These conditions make the use of
human PSCs for clinical applications which were more difficult
to achieve.

3.2. Suspension Culture Methods

Current  development  in  cell  culture  technology  has
enabled adherent  PSCs to  be  adapted for  suspension culture.
This method can provide a better mass transfer of nutrition and
does  not  require  enzymatic  or  physical  removal,  which  can
disrupt the cell membrane. Elimination of the feeder layer and
synthetic  matrices  can  simplify  the  procedure  and  minimize
contamination. In industrial applications, this system can also
increase the scalability by enabling high-density cell culture (>
1 × 107 cells/mL) and significantly reducing the costs involved
[28].  A  recent  experimental  study  revealed  that  global  gene
expression,  mainly  the  pluripotency  gene  and  functional
characteristics,  were  comparable  to  those  maintained  under
adherence conditions [74, 75]. Differentially expressed genes
between  suspension  and  adherent  PSCs  culture  were  mainly
associated  with  cellular  adhesion  and  extracellular  matrix
interactions [74, 76]. In addition, the 3D structure also shows
better  performance  in  differentiation  in  comparison  with
adherent  culture  based-differentiation.  This  phenomenon
occurred because  of  the  lack of  interaction between PSCs in
adherent culture [77].

4.  MECHANICAL  AND  PHYSIOLOGICAL
ENVIRONMENT  IN  BIOREACTOR  SYSTEMS  FOR
PSCs  EXPANSION  AND  DIFFERENTIATION

The bioreactor system provides expandable culture volume
and  dynamic  physiological  environment  compared  to
conventional dish culture [78]. Ideally, bioreactor systems for
PSC  cultivation  should  meet  several  essential  requirements,
such as efficient mass transfer of oxygen and nutrients, waste
transfer,  and  minimum  shear  stress  [79].  These  microenvi-
ronmental factors may affect cell pluripotency and fate during
differentiation.  Depending  on  the  utilization,  optimal  PSCs
expansion  or  differentiation  can  be  conducted  under  various
conditions (Table 2).

Generally,  in  the  culture  systems,  PSCs  are  incubated  at
37°C and pH 7.4. The instability of these culture conditions can
inhibit cell proliferation, reduce pluripotency, and decrease cell
viability  [80,  81].  One  of  the  main  limiting  factors  in  PSCs
culture  is  the  low  pH  which  is  mostly  caused  by  the
accumulation  of  secreted  lactate  in  culture  medium  [45,  82,
83]. This condition occurred because of it`s higher glycolysis
rate  and  cell  cycle  profile  when  compared  to  adult  somatic
cells,  impacted  to  higher  lactate  secretion  than  glucose
consumption  [82,  84].  Therefore,  the  continuous  removal  of
lactate is necessarily required in PSCs culture system.

Viscosity  is  correlated  with  fluid  movement  in  culture
systems. Appropriate medium viscosity properties are required
to  maintain  the  proper  PSCs  culture.  Medium  with  lower
viscosity  exhibits  more  rapid  mass  transfer  and  uniform
conditions  in  mass  production.  In  contrast,  a  previous  study
showed  that  human  PSCs  culture  in  less  viscous  media  may
cause cell agglomeration and shear-induced apoptosis, leading
to lower yields [8]. In addition, a recent study showed that the
culture  medium  which  exhibit  continuous  viscoelasticity  by
using an optimized non-toxic polymer, such as low acyl gellan
gum can form large numbers of uniformly sized aggregates and
maintain  cells in  a suspension without  agitation, is one prom-
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Table 2. Comparison and example of various culture systems application for PSCs expansion and differentiation. The (*)
mark showing the remaining disadvantage which need to be overcome.

Culture Systems Ease of
Scale Up

Ease of
Monitoring

Ease of
Harvesting

Mass
Transfer

Shear
Stress

References of Application in
PSCs Expansion

References of
Application in PSCs

Differentiation Types

General
culture
systems

Conventional
static culture low* low* high low* low hiPSCs[52,148,149], hESCs[52],

miPSCs[150], mESCs[151]

Hepatocyte [152],
chondrocytes [153],

muscle fiber cells [154],
lung and thyroid

progenitor cells [155],
odontoblast [156],

cardiomyocytes [157]

Automation medium high high low* low
hiPSCs [106,110,158 - 160],
hESCs [161], mESCs [160],

miPSCs [162]

Cardiomyocyte [159],
neural cells [160]

Stirred
bioreactor high high high high high*

hiPSCs
[97,113,114,148,163,164],

hESCs [97,114], miPSCs [165]

Hepatocyte [123],
cardiomyocytes
[122,166,167],

pancreatic β cells [168],
Endothelial cells [169]

Rotary bottle medium medium high high medium mESCs [170], hESCs [171]
Cardiomyocyte

[127][166], osteogenic
cells [170]

Hollow fiber
bioreactor medium low* low* medium low mESCs [172], hESCs [131] Hepatocyte

[129,130,173]

Other
culture

techniques

Microcarrier high low* low* medium high* mESCs [174], hESCs [175],
hiPSCs [175]

Neural progenitor [176],
endoderm progeny

[177], hematopoetic
cells [178], hepatocytes
[179], cardiomyocytes

[168,180,181].

Cell
encapsulation medium low* low* medium low miPSCs [145], mESCs

[142,146], hESCs [141,182]

Cardiomyocyte
[143], pancreatic

cells [183],
definitive endoderm

[182], osteogenic
cells [170]

ising culture strategy [85]. However, scaling up of this method
results in the limited mass transfer of oxygen and nutrients.

Oxygen is  one of  the most  important  components  in  cell
culture systems and it is involved in nearly all cellular aerobic
metabolic  cycles.  In  PSCs  propagation,  the  concentration  of
oxygen in the culture media is a crucial factor in pluripotency
and  proliferation  that  maintains  their  cellular  characteristics
[86]. An in vitro study clearly demonstrated that differentiation
was  significantly  reduced  in  human  ESCs  under  hypoxic
culture  conditions  (1-5%  O2)  compared  to  its  culture  under
normoxic  conditions  (21%  O2)  by  morphologically  distinct
growth  area  examination  and  expression  of  pluripotency
markers according to biochemical and immunohistology assays
[84,  87].  Another  study  showed  that  hypoxia  of  iPSCs
cultivated  under  5%  O2  improved  the  efficiency  of  iPSC
proliferation  and  enhanced  the  expression  levels  of
transcription  factors  for  iPSC  reprogramming  (Oct3/4  and
Nanog),  which  are  required  to  maintain  pluripotency  [88].
Repeated  passaging  of  hESCs  under  normoxic  culture
conditions  resulted  in  an  increased  number  of  differentiated
cells and reduced self-renewal [89]. ESC growth under hypoxic
conditions  can  preserve  the  pluripotency  during  repeated
passaging  and  able  to  promote  the  formation  of  embryoid
bodies after random differentiation [87]. Forsyth et al. reported

that  physiologic  oxygen  (2%)  may  reduce  chromosomal
damage and induce recovery after oxidative damage post room
oxygen  (20%)  treatment  [90].  These  studies  clearly  showed
that oxygen concentration affects PSC growth, differentiation,
and EB formation. In this regards, the PSCs can be maintained
or expanded in hypoxia condition and it can gradually switch
into  normoxia  condition  in  a  certain  stage  when  the  differ-
entiation  was  performed.  For  example,  the  different  oxygen
concentration  can  be  applied  in  hepatic  differentiation  by
mimicking  the  original  liver  development  during  embryo-
genesis  [91]

Cell aggregation control is very important for maintaining
PSCs  in  an  undifferentiated  state  and  preserving  cellular
viability.  In  suspension  hPSC  propagation  in  vitro,  cell-cell
interactions  are  essentially  required.  Therefore,  PSCs  must
grow in appropriate-sized aggregates. A recent study demons-
trated that excess aggregation can direct PSCs into spontaneous
differentiation, which occurred as the size of PSCs aggregates
increased  [92  -  95].  Moreover,  insufficient  oxygen  and
nutrition exposure can result in necrotic cells in the center of
the  aggregates  [96].  Some  approaches  for  controlling
aggregation  in  suspension  culture  have  been  reported.
Culturing  in  a  microwell  is  one  of  the  most  widely  used
technologies  for  controlling  aggregation.  Seeded  cells  are
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divided  and  form  a  single  aggregate  in  each  microwell,
resulting in the reproducible growth of uniform aggregates with
high  efficiency.  However,  the  culture  operations  are  still
difficult  to  control  because  the  high  medium  flow  can  be
resulted  from  strong  flow  during  culture  medium  changes,
causing  aggregates  to  detach  from  the  microwell  and  fused
each other. Therefore, it is technically required gentle treatment
during medium removal or addition. Alternatively, to control
these aggregations in suspension culture, dynamic conditions
can  be  applied  in  the  bioreactor  system  by  adding  impeller
agitation  of  the  culture  media,  but  as  an  adverse  effect,
excessively high shear stress causes cell death and spontaneous
differentiation [97, 98]. One of recently developed method for
controlling aggregation is the addition of lipid-rich albumins,

such as Albumax. This compound can reduce aggregation by
inhibiting E-cadherin-mediated cell-cell attachment. A previ-
ous  study  showed  that  0.2-0.5%  Albumaxin  the  culture  me-
dium is the optimal concentration for obtaining appropriately
sized aggregates and higher hiPSC yields in 12-well plates in
well-preserved pluripotency [99].

Shear  stress  is  a  particularly  important  biomechanical
factor  in  mammalian  cell  culture.  Most  of  the  cell  types
respond  to  shear  stress  by  physiological  or  gene  expression
alterations [100, 101]. Generally, excess hydrodynamic stress
by vigorous agitation can decrease the viability of mammalian
cells [76, 102]. In addition, excess agitation during cultivation
may  affect  the  phenotype  and  characteristics  of  PSCs.  For
example,  an  excessive  centrifugal force  of 1000 ×g or more

Fig.  (1).  Different  culture  systems  in  PSCs  cultivation:  2D  static  culture  (A),  solid  filled-microcarrier  (B),  porous  microcarrier  (C),  coated
microcarrier (D), cell encapsulation (E), stirred bioreactor (modified by oxygen sparger and perfusion systems) (F), hollow fiber systems (G), and
rotary culture systems (H).

PSCs

Microcarrier 
(coated 
with ECM)

PSCs

Semi-permeable 
hollow fiber tube

Intracapillary 
compartement

Extracapillary 
compartement

Perfusion 
tube

G
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Perfusion 
inlet

F

PSCs

Rotating 
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H

PSCs

Microcarrier

Porous

PSCs

Microcarrier

PSCs
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permeable 
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A

C
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D
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may induce phenotypical shifting and decrease the proliferation
rate during expansion [80]. A study conducted by Sargent et al.
revealed that exposure to hydrodynamic stress conditions not
only significantly affected aggregates formation and structure,
but  also  induced  downregulation  of  pluripotency  genes,
resulting in spontaneous differentiation [103]. Moreover, in the
suspension culture systems, cells in aggregates are exposed to
higher shear stress than individual cells because of their large
particle diameter [104].

5. CULTURE SYSTEMS IN PSC MASS PRODUCTION

5.1. PSC Adhesion Culture Systems

Conventionally, PSCs are cultured in tissue culture dishes
(Fig.  1A),  multiwell  plates,  and  tissue  culture  flasks.  These
methods provide two-dimensional  surfaces  for  the  growth of
PSCs. Under these two-dimensional conditions, morphological
examination of PSCs in colonies or as single cells can be more
easily  observed  by  direct  visualization  using  a  microscope,
which is important for monitoring both undifferentiated PSCs
or  changes  in  PSC  shape  during  various  stages  of  differ-
entiation. These disposable systems are also relatively simple,
easy to handle, and inexpensive. However, in large-scale PSC
production, this system represents several disadvantages, such
as  a  limited  surface  area  (approximately  2-225  cm2  working
area),  which  is  required  for  adherent  cells.  This  condition
makes  the  scaling  up  difficult.  Furthermore,  the  static
conditions of the culture can cause poor mixing of the medium,
leading  to  concentration  gradients  in  PSCs  culture  [38].
Because  of  these  gradients,  controlling  parameters  such  as
temperature, pH, and dissolved O2 is challenging in adhesion
culture  systems.  Multiple  plates  or  flasks  (or  flasks  with
multiple  trays)  are  required  to  obtain  large  numbers  of  cells
simultaneously,  but  these  vessels  also  require  repeated
extensive  handling  for  feeding  and  subculturing,  making  the
process more laborious and prone to contamination [105].  In
addition,  the considerable amount of these disposable plastic
materials waste can cause an environmental problem.

To  overcome  the  difficulty  of  handling,  an  automated
culture  system  has  been  developed  by  utilizing  a  machine,
robotics,  and  programming  to  conduct  cell  propagation.
Automation systems show many benefits, such as the ability to
significantly  reduce  the  working  time  for  the  technician,
provide automated and scheduled screening, imaging, or cell
maintenance  based  on  cell  growth,  and  minimize  the  risk  of
contamination [106, 107]. Most of the commercially available
automated  culture  systems,  such  as  Cytogration™  systems,
SelecT™ systems,  and  AcCelerator™ systems,  are  based  on
continuous  cell  maintenance,  which  automatically  delivers
media containing nutrients and removes cellular waste products
[108]. They also allow for periodic automated evaluation, such
as  to  detect  the  pH,  nutrition  and  waste  concentrations,  cell
growth rate, and cellular viability [109]. These systems provide
more  consistent  data  regarding  the  culture  procedure  [109].
Soares  et  al.  established  a  protocol  for  maintaining  hiPSCs
using  feeder-free  and  chemically  defined  media  on  the
inCompacTSelecT™ automation platform without significantly
decreasing  pluripotent  capabilities  [110].  Current  automated
culture  technology,  such  as  CellCelector  also  equipped  with

cell  sorting  combined  with  a  cell  scrapping  module  to
selectively harvest the PSCs colony from feeder cells [111].

5.2. PSC Suspension Culture Systems

5.2.1. Stirred Bioreactor

A stirred bioreactor  is  one of  the most  common types of
bioreactor systems used to cultivate PSCs on a large scale. This
culture  system provides  a  homogeneous  environment  for  the
expansion of ESCs and iPSCs by continuous agitation in large
working  volumes  (50  mL-200  L)  [5,  112,  113]  (Fig.  1F).
Various types of feeding operations such as batch, fed-batch, or
perfusion have been developed. In these culture systems, PSCs
are cultured as aggregates or adherent colonies combined with
various 3D cell culture technology, such as microcarrier, cell
encapsulation,  or  scaffold.  The  combination  of  culture
techniques may enhance scalability, improve oxygen and mass
transfer,  and  ease  complicated  handling.  In  addition,  this
bioreactor  is  controllable  by  installing  sensors  to  detect  pH,
dissolved O2, medium level, and temperature [114].

The  stirred  bioreactor  mainly  using  an  agitation  mecha-
nism  with  an  impeller  or  stirrer  to  obtain  a  uniform  culture
mixture. In suspension culture, this agitation is important for
maintaining pluripotency. A previous study evaluated various
levels of shear in a stirred suspension bioreactor to determine
its ability to maintain aggregate size. The results showed that
the  higher  level  of  shear  force  in  the  suspension  bioreactor
produced  smaller  hESC  and  hiPSC  aggregates  compared  to
lower  shear  force  [114].  On  the  other  hand,  excessive
mechanical agitation can produce high shear stress, which can
harm  PSCs  by  affecting  their   pluripotency and  viability
 [114 - 117]. Such damage can be relieved by decreasing the
rotational speed, modifying the shape and size of the impeller,
or  by  adding  additional  substances,  such  as  bovine  serum
albumin,  to  protect  the  cells  from  shear  stress.

In  some  bioreactors,  installation  of  a  gas  sparger  can
accelerate gas transfer and increase hydrodynamic movement.
However,  the  bubbles  produced  by  the  gas  sparger  may
potentially  harm the  cells.  These  bubbles  rise  faster  than the
medium  flow  and  slowly  carry  the  cells  to  the  surface,
increasing  the  shear  stress  to  the  cell  membrane  [118].  This
condition  was  previously  demonstrated  by  microfluidic
assessment,  which  mimics  bubble-induced  shear  stress,  in
Chinese  hamster  ovary  cells  [119].  In  addition,  bubble
accumulation can form a foam, causing bubble burst-associated
damage  at  the  medium  surface  [120].  In  most  cases  of
mammalian cell culture, small bubbles (approximately <2 mm
in diameter) are more significantly damaging to cells than large
bubbles  (10–20  mm).  Agitation  by  an  impeller  can  also
enhance  cell  membrane  damage  by  disrupting  the  large  gas
bubbles arising from the sparger [121].

Stirred  bioreactor  also  can  be  applied  in  PSC
differentiation. Although one study demonstrated its capability
to  support  the  high-scale  differentiation  of  PSCs  such  as
cardiomyocytes from murine ESCs [122] and hepatocytes from
hiPSCs [123], the hydrodynamic conditions in this bioreactor
appear  to  produce  a  high  subpopulation  of  cells  with
heterogeneous phenotypes of various types of cells [123, 124].
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5.2.2. Rotary Bottle Culture Systems

Rotating bottle culture systems enhance the efficiency of
aggregate formation, increase cell yield and homogeneity, and
do  not  adversely  affect  differentiation  [103].  This  culture
system was first developed by NASA to investigate cell culture
systems in the space. Rotary culture systems consist of rotating
3D  chambers  to  accommodate  the  cell  culture,  which  is
suspended  under  microgravity  conditions,  creating  a  conti-
nuous homogenous environment with low shear stress for PSCs
culture  (Fig.  1H).  These  hydrodynamic  properties  are  very
important for supporting the maintenance of aggregate form-
ation in suspension culture. This system improves the homo-
geneous  condition  and  prevents  excess  PSCsagglomeration
[103,  125].  In  large-scale  production  of  PSCs,  their  systems
complexity causes difficulties in continuous feeding and uses a
low working volume (approximately 10–500 mL) [112].

Several studies have demonstrated that the dynamic rotary
suspension  culture  enhances  PSCs  aggregation  and  differ-
entiation by supporting specific signaling pathways involved in
directing  cell  fate.  Lei  et  al.  found  that  the  biomechanical
properties  of  this  culture  system  induce  Wnt/β-catenin
signaling, which is responsible for mouse ESC differentiation
into  the  mesoderm  and  endoderm  [126].  Another  study
revealed  that  the  cardiogenic  differentiation  of  murine  ESC
aggregates  in  a  rotary  culture  environment  can  produce  a
higher percentage of contracting cardiomyocytes compared to
differentiation in adherent culture [127].

5.2.3. Hollow Fiber Bioreactor

The hollow fiber bioreactor is a culture system based on a
perfusion  system  that  uses  small  semi-permeable  membrane
hollowed fiber tubes. By circulating the culture medium, this
system  can  provide  an  exchange  between  small  molecule
components, such as nutrients and metabolic wastes (Fig. 1G).
This system mimics the microenvironment of blood vessels in
vivo by using two different compartments. The first compart-
ment is an intercapillary space within the hollow fibers, while
the  second  is  extra-capillary  space  surrounding  the  hollow
fibers [79]. The cells are cultured in the extra-capillary space,
and  oxygenated  medium  at  an  appropriate  pH  is  circulated
through hundreds to thousands of capillaries within the hollow-
fiber cartridge using perfusion systems. Oxygenation and pH
control  is  achieved  by  a  gas-permeable  surface  in  a  CO2

incubator.  The  exchange  of  nutrients  and  waste  products  is
achieved by diffusion through the semi-permeable membrane
fibers.  A  separate  culture  compartment  and  perfusion
compartment produces the low-stress environment required for
maintaining PSC pluripotency and viability. In this system, the
culture compartment can be filled with up to 108 cells/mL (near
the tissue density in vivo) [128]. Therefore, this system requires
less medium and fewer growth factors than traditional culture
methods. This high-density culture also can facilitate the three-
dimensional growth resembling the in vivo tissue structure to
support  PSC  differentiation.  Recent  studies  showed  that  the
functional  activity  and  formation  of  several  tissue-like
structures were increased in hepatocyte-derived hiPSC aggre-
gates after hepatic differentiation using this system [129, 130].

However, hollow fiber systems have some disadvantages,

such  as  difficulties  in  monitoring  and  controls.  At  high  cell
densities, spatial concentration gradients in the extra-capillary
compartment can form, based on the distance of the PSCs to
the intercapillary compartment. Previously, a study by Roberts
et  al.  evaluated  the  potential  and  feasibility  of  using  hollow
fiber systems for hESC mass production. The results indicated
that  hESCs  can  be  scaled  up  in  a  hollow  fiber  bioreactor
without  a  significant  decrease  in  pluripotency  [131].

6.  OTHER  IMPROVEMENTS  TO  ENHANCE  PSC
CULTURE SYSTEMS

6.1. Microcarriers

In optimizing the scalable culture systems for  expanding
undifferentiated PSC culture, traditional adherent cell culture
can  be  utilized  on  polymer-  or  hydrogel-based  microcarrier
beads [132]. Microcarriers can provide a high surface area for
cell  attachment  and  proliferation.  This  technique  enables
adherent-type cells  to  be treated as  similar  to  the  suspension
culture. Compared to conventional static adherent culture, the
main advantage of microcarriers is that they can accommodate
a larger number of cells and occupy less space in the bioreactor
[133].  According  to  a  previous  study,  culturing  on
microcarriers was conducted using 2- to 4-fold higher densities
of iPSCs than in conventional adherent culture [134].

Generally,  microcarriers  are  divided  into  two  types:
nonporous  microcarriers  and  porous  microcarriers  (Fig.  1B,
1C). Solid-filled microspheres or nonporous microcarriers are
composed of bioceramic or biopolymers. Anchorage-dependent
animal  cells  can  be  grown  on  the  surface  of  small-diameter
spheres  that  can  be  maintained  similarly  to  in  suspension
cultures. Equal effects of nutrients and growth on the surface of
microcarriers  can  be  achieved  to  expand  cells  with  homo-
geneous  characteristics  and  differentiation.  However,  direct
contact  between  the  attached  cell  and  media  caused  some
frictional and shear stress, which can damage the cells, mainly
when combined with highly hydrodynamic conditions such as
in a stirred bioreactor. Porous microcarriers contain pores and
channels  that  are  large  enough  for  cells  to  enter  and  grow
within  the  carriers,  which  allow  for  culturing  at  higher  cell
densities than for nonporous microcarriers. In addition, these
microcarriers can create a microenvironment inside the beads,
protecting the cells from shear and frictional stresses caused by
aeration and agitation in  a  dynamic bioreactor.  Thus,  porous
microcarriers  are  more  appropriate  for  large-scale  mass
production  of  cells  compared  to  nonporous  microcarriers.
However, it is difficult to observe cells inside the microcarriers
and  separating  and  collecting  the  cells  is  challenging.  In
addition,  the  gradients  of  conditions,  such  as  different  in
hydrodynamic properties, cell-cell interactions, and nutrition or
oxygen  concentrations,  have  been  observed  in  pores.
Consequently,  nutrient   transfer  and   cellular  waste   product
release  will be  more  limited for  the cells  inside  the pores
 [135 , 136]. This condition also can cause variability among
cultured PSCs undergoing expansion or differentiation.

Nonporous microcarriers can be coated with ECM such as
collagen or fibronectin to enhance cell attachment and adhesion
(Fig.  1D)  [132,  137].  These  coatings  are  completely
dissolvable  in  trypsin  solution,  which  allows  the  sampling,
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counting, and harvesting of the cells without interference from
the  carriers.  Chen  et  al.  investigated  the  cellular  attachment
efficiency, growth, and pluripotency of hESCs using 10 types
of  microcarriers.  The  study  revealed  that  poor  growth  and
gradual loss of pluripotency occurred at the same time because
of  a  lack  of  ECM  interactions  in  uncoated  microcarriers.
Higher  yields  and  stable  pluripotent  states  of  hESCs  grown
using Matrigel-coated microcarriers were achieved compared
to using other types of microcarrier culture [138]. A study also
reported the successful differentiation of the mesoderm from
hESCs and hESC using similar types of microcarriers [139].

Although cellulose is the most common material used for
microcarriers,  various  other  materials  have  also  been  used,
such  as  hydroxyapatite,  tricalcium  phosphate,  and  glass
ceramics.  Synthetic  degradable  polymers  such  as  polylactic
acid, polyglycolic acid, and polycaprolactone are also used as
microcarriers.  According to a  previous study,  hESCs did not
attach  and  grow  on  microcarriers  with  a  negatively  charged
surface [65]. The sizes of the spheres are diverse depending on
the  conditions,  such  as  material  content,  surfactant  type  and
amount, type of solvent, and stirring speed. Synthetic polymers
typically  lack  hydrophilic  and  adhesive  ligands,  which  are
required  for  cell  attachment.  Therefore,  the  surface  requires
hydrophilization  and  coating  with  adhesive  proteins  such  as
Matrigel, fibronectin, or collagen. For PSCs propagation, it has
been  reported  that  the  use  of  combined  materials  in
microcarriers  can  affect  their  cellular  characteristics.  For
example, combining hydroxyapatite powder within polylactic
acid  can  potentially  improve  cell  adhesion,  cell  growth,  and
osteoblastic differentiation [135].

6.2. Cell Encapsulation

The  main  principle  of  cell  encapsulation  is  to  envelope
viable  cells  or  aggregates  within  semi-permeable  membrane
layers to protect the cells from shear stress and to accumulate
the  native  products  secreted  from  cells  while  exchanging
nutrients and wastes (Fig. 1E) [140]. Various sizes of capsules
are available for cell encapsulation, which are 0.3-1.5 mm or
larger.  Enclosing  PSCsin  hydrogel  can  create  a  microenvi-
ronment with cell-hydrogel contact and auto/paracrine effects
while protecting them from the hydrodynamic shear stress. A
report showed that encapsulation provided more than 6 months
of  prolonged feeder-free  PSCs expansion  in  well  maintained
pluripotency  [141].  Another  report  showed  that  the  differ-
entiation  markers  in  encapsulated  PSCs  were  downregulated
compared  to  cells  in  conventional  suspension  culture,  which
prevented unexpected PSCs differentiation [142]. Besides for
PSCs expansion, the cell encapsulation can also be utilized for
differentiation.  Kerscher  et  al.  performed  the  cardiac  differ-
entiation  of  hiPSCs  by  using  direct  hydrogel  encapsulation
[143]. Various types of hydrogels are used for encapsulation,
such  as  PEG [143],  agarose  [38],  hyaluronic  acid  [144],  and
calcium alginate [145]. Calcium alginate hydrogel is the most
widely used hydrogel for encapsulation because of its fast and
reversible  gelation.  A  recent  investigation  revealed  that
alginate  composition  can influence  the  cellular  phenotype  of
murine  ESCs  towards  the  preservation  of  pluripotency  or
differentiation  [146].

In contrast to these advantages, the application involves an
encapsulation and decapsulation process, which is challenging
when using hydrogel with non-reversible gelation. In addition,
the  PSCs  which  exhibit  a  high  proliferation  rate  can  escape
from hydrogel capsules and break outside the capsules when it
could not accommodate the cell growth. Coating capsules with
a  solid  shell  can  prevent  this  escape  but  may  increase  the
difficulties of decapsulation [145]. Thus, cell encapsulation can
be  utilized  for  long-term  maintenance  or  implantation  to
achieve  immuno-isolation  by  protecting  cells  from  antibody
recognition.

6.3. Perfusion Systems

To  optimize  the  mass  transfer  of  essential  compounds,
some  bioreactors  are  equipped  with  continuous  perfusion
systems.  This  configuration provides  better  oxygen transport
and  enhance  the  cell  feeding  by  frequently  removing
byproducts or metabolic wastes and replacing the fluids with
fresh  medium  containing  nutrients  [98].  One  study  reported
that  PSCs  cultivation  successfully  maintained  with  good
viability,  pluripotency,  and  genetic  stability  after  6  days  of
culture  by  automated  perfusion  feeding  of  mESCs  in  a  Petri
dish.  This  system  also  significantly  enhanced  the  cellular
growth  rate  [147].

CONCLUSION AND FUTURE DIRECTIONS

As  described  above,  various  bioreactor  systems  provide
different  microenvironments  and  physiological  factors.  In
addition, the optimum condition for PSCs depends on the stage
of culture, such as maintenance, propagation, or differentiation
into  target  cells.  For  example,  maintenance  and  propagation
require rapid exchange of nutrients and wastes because of the
rapids  anaerobic  respiration  in  these  cells.  Therefore,  the
perfusion system or fed-batch culture system is preferred for
PSCs  propagation.  In  contrast,  the  culture  costs  for
differentiation are much higher than those during maintenance
because  it  requires  numerous  amount  of  growth  factors
combinations. Therefore, the use of growth factors should be
reduced, such as in dialysis culture systems. Thus, choosing an
appropriate  culture  system  is  important  for  the  industrial
application  of  PSCs.
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