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Abstract:

Background:

In scoliosis, kypholordos and wedge properties of the vertebrae should be involved in determining how stress is distributed in the
vertebral column. The impact is logically expected to be maximal at the apex.

Aim:

To introduce an algorithm for constructing artificial geometric models of the vertebral column from DICOM stacks, with the ultimate
aim to obtain a formalized way to create simplistic models, which enhance and focus on wedge properties and relative tilting.

Material/Methods:

Our procedure requires parameter extraction from DICOM image-stacks (with PACS,IDS-7),  mechanical  FEM-modelling (with
Matlab and Comsol). As a test implementation, models were constructed for five patients with thoracal idiopathic scoliosis with
varying apex rotation. For a selection of load states, we calculated a response variable which is based upon distortion energy.

Results:

For the test  implementation,  pairwise t-tests  show that  our  response variable  is  non-trivial  and that  it  is  chiefly  sensitive to  the
transversal stresses (transversal stresses where of main interest to us, as opposed to the case of additional shear stresses, due to the
lack  of  explicit  surrounding  tissue  and  ligaments  in  our  model).  Also,  a  pairwise  t-test  did  not  show  a  difference  (n  =  25,  p-
value≈0.084) between the cases of isotropic and orthotropic material modeling.

Conclusion:

A step-by-step description is given for a procedure of constructing artificial geometric models from chest CT DICOM-stacks, such
that the models are appropriate for semi-global stress-analysis, where the focus is on the wedge properties and relative tilting. The
method is inappropriate for analyses where the local roughness and irregularities of surfaces are wanted features. A test application
hints  that  one  particular  load  state  possibly  has  a  high  correlation  to  a  certain  response  variable  (based  upon  distortion  energy
distribution on a surface of the apex), however, the number of patients is too small to draw any statistical conclusions.
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1. BACKGROUND AND AIM

This  paper  concerns  idiopathic  scoliosis  in  adolescents.  About  80 percent  of  structural  scoliosis  is  classified as
idiopathic scoliosis (American Association of Neurological Surgeons [1]). If there is an underlying known diagnosis,
believed to be the chief causing factor, then the scoliosis is usually not classified as idiopathic, an example of this is
neuromuscular scoliosis. The pathological mechanisms of scoliosis are multi-factorial and obviously in the idiopathic
case  not  yet  fully  understood.  Main  factors  that  are  recognized  as  essential  are  rotational  lordosis  with  a  growth-
discrepancy between the anterior and posterior, asymmetrical growth and muscle activities, see Hefti [2]. Brink et al.
[3] proposed that the anterior overgrowth is the result of the scoliotic mechanism. For deeper current knowledge about
idiopathic scoliosis see e.g. the textbook by Newton et al. [4]. Using FEM-analysis based on models obtained from
medical imaging, allows for noninvasive investigation of how stress is distributed at and near the apex, in scoliosis
patients. Mechanical loading influences the rate of long bones and vertebrae and clearly altered loading is implicated in
scoliosis (and other skeletal deformities), see e.g. Stokes [5]. This together with the aforementioned observations of
growth-discrepancy between the anterior and posterior in scoliosis makes it interesting to gather knowledge about how
stress from applied axial and shear forces respectively, is distributed in the vertebral column at, and near the apex, for
varied severity of scoliosis.

1.1. Primary Aim:

To  find  a  semi-global  approach  to  simplistic,  but  rigorously  defined,  modelling  that  keep  the  main  wedge  and
relative tilt features of the vertebrae. The requirement of rigour and simplicity together implies, in practice, that small
local surface variations will be discarded and instead basic geometric shapes will be used.

1.2. Secondary Aim:

To  implement  the  procedure  from  our  primary  aim  in  a  test  study  that  arises  given  a  certain  biomechanical
hypothesis  (see  below).  In  order  to  describe  the  test  study  and  the  hypothesis  which  underlies  it,  we  need  some
prerequisites and definitions, in particular, we need to define our response variable.

2. RESPONSE VARIABLE AND HYPOTHESIS

2.1. Background

Our  FEM  (Finite  Element  Method)  simulations  were  performed  using  Comsol  Multiphysics  (the  successor  of
FEMLAB). Comsol has recently appeared in the research of the spine, e.g. for simulating a segment of the vertebral
column in order to study if the stress-strain on the vertebral isthmus is affected by a bifid arc, see Quah et al. [6]. Many
other competing FEM software exist, e.g. ANSYS, used by Anburajan & Divya [7], to simulate lumbar spine. Other
examples can be found in Aleti et al. [8], where they use fundamental geometric figures to model the spine and among
other  things  calculate  the  effect  of  many  repetitions  of  certain  stresses,  Nédli  et  al.  [9],  where  they  study  the
compression of discs, upon applied stress to the vertebrae, and Shazly et al. [10] & [11], where they model vascular
blood flow and study the changes with respect to spinal chord compression. Our model construction, however, starts
from DICOM stacks (underlying chest CT-scans). From this, one can create CAD-like mesh models via segmentations,
and then simulate load-states and measure some appropriate output or response variable. Our chosen response variable
in the present FEM study is influenced by the software chosen, i.e. Comsol. Let us now present the response variable.

2.2. Response Variable

First note that an applied vertical downward stress on a vertebra above the apex will  render a distortion energy
response, at each point on a surface that is approximately parallel to the top or bottom surface of a model of the apex.
The response will, of course, look different depending upon where the stress is applied (i.e. which load-state) is used,
see Definition 2.1) on the one hand and upon the curvature, wedge and tilting properties of the vertebrae on the other
hand.  We have chosen to perform our analysis  on artificial  geometric models of the apex whose interface with the
intervertebral discs are modeled as planar. Our artificial geometric models have planar interface with the intervertebral
discs. For our test implementation on such models, the following definitions will be used.

2.2.1. Definition (Load-State).

We define a load-state (in Comsol) to be a fixed set of specified solids in a Comsol model, together with non-void
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body  load  conditions  and  non-void  fixed  constraints.  (In  particular,  given  a  load-state,  the  minimal  conditions  are
fulfilled,  for  being  able  to  simulate  point-wise  distortion  energy  calculations  in  a  solid  mechanics  environment  in
Comsol).

2.2.2. Definition (Focus Point).

Given a bounded planar domain, with a given coordinate grid and with pointwise calculated, non-constant values of
distortion energy,  for  some model  and a given load-state;  assume that  the global  maximum occurs on the union of
finitely many subdomains, curves and points. In the case where the global maximum is attained on a subdomain, we
assign to that domain the point which constitutes the relative center of mass of the subdomain. If there is at least one
subdomain, we use the point assigned to the subdomain of largest measure, with that property. That will be called the
focus point. If there are several domains of the same measure the mean of their centers of mass is used. (Practical note:
In  cases  when  there  is  more  than  one  subdomain  and  where  we  suspected  that  one  of  them could  be  the  result  of
artefacts  or  inconsistencies  (e.g.  sharp  edges)  between  the  artificial  model  and  the  CT,  manual  investigation  was
performed and the focus point was decided ad hoc by the investigator)

2.2.3. Definition (Apex Top Response Angle)

Fig. (1). Consider a 3D model of a vertebral column, from an upper body CT, and let Λ be a plane intersecting the
apex in the model. Assume a load-state is given. Let ℓ be the projection, on Λ, of the line (as described in Section 3.2),
that describes the tilting and rotation of the hips relative to the scanner bed in the CT. The apex top response angle with
respect to Λ, for the given load-state, is the angle relative to ℓ, of a line passing through (1) the relative center of mass,
of the closure of the intersection of the apex with Λ, and (2) a point at which the amplitude of the distortion energy is
maximal (the focus point or a point whose properties best resembles such a point, chosen ad hoc by the investigator).
When the load-state, Λ and ℓ are clear from the context, we shall simply use the term apex top response angle.

In this paper, we shall only apply the term apex top response angle to the situation of an artificial geometric model,
where the top face of the vertebral body in the model is planar, and , Λ in Definition 2.3, will always be assumed to
contain the top face, hence we shall be working in a situation that resembles the one depicted in Fig. (1).

Fig. (1). Illustration of how to obtain the so called apex top response angle. Note that the very definition requires a given model
(including a certain line describing the tilting and rotation of the hips relative to the scanner bed) extracted from CT, together with a
given load-state for that model. This implies that one can calculate pointwise distortion energies (see the rightmost image, showing
the  result  of  such calculations  for  the  full  solid).  Comsol  allows for  extraction  of  subdata  corresponding to  slices  in  the  model
(examples of such slices are depicted above the solid response image). For the response variable, we extract a plane parallel to a face
of the apex (see lower left image). In this figure, we can find the point corresponding to the approximate relative center of mass
(depicted by a red circle) in the slice, and the translation of the sacrum line (Section 3.2 regarding how to find the sacrum line) that
passes that point. The apex top response angle is the angle at the aforementioned point, between the sacrum line and a line passing
through the focus point, usually, this is a unique point, but in cases that it is not and where artifacts can be suspected, ad hoc choice
by the investigator was used.

     'sacrum line'

Response angle
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Now that we have defined our response variable we can formulate a hypothesis that motivates the implementation
describes above as our secondary aim.

2.2.4. Hypothesis:

The  wedge  and  tilting  properties  of  the  apex  and  nearby  vertebrae,  in  scoliosis  patients,  render  (for  some
appropriately chosen load-state) a distortion energy response, which accumulates in amplitude at an apex top response
angle that varies as an analytic function of the apex vertebral rotation (for some interval).

2.2.5. Remark

In order for our response variable to be logical, we need to verify that there are notable variations with respect to
some common load-states  and  patient  models.  In  order  to  best  suit  our  practical  purposes  we  devised  it  to  be  less
sensitive to shear stresses, than to transversal, almost vertical (for a standing patient) stresses. Additional shear stresses
were of less interest is due to the lack of explicit surrounding tissue and ligaments in our model. To assess the latter we
investigated if there was a difference between the focii of the distortion energy response when comparing load states
with additional left and right shear component respectively. An additional question to address is whether the chosen
response variable was affected by interchanging orthotropic material parameters with isotropic material parameters.

3. METHOD

3.1. Overview

Our suggested algorithm for creating artificial geometric models starts from DICOM stacks (see Section 3.6)
and for our test implementation we only require models including the apex together with the upper and lower
adjacent vertebrae.
The test implementation involved creating, for each of 5 patients with idiopathic thoracic scoliosis (where the
patients were chosen to have a variety of apex rotation values), two parallel models, one using isotropic material
parameters and the other using orthotropic material parameters.
For each isotropic model, we simulated 5 basic load-states (using a boundary load applied at the top face in the
negative z-direction). For comparison purposes, we also simulated adjusted states associated to each of the basic
states: one variant which included additional clockwise shear load components on the upper vertebra and one
variant which instead included additional counter-clockwise shear load components on the upper vertebra. For
each simulated load-state we calculated, using Comsol, the apex response angle.
We used paired t-test in order to compare: (i) The 25 different pairs of isotropic and orthotropic based model
simulations, respectively, of the 5 load-states without additional shear load components. (ii) The 25 pairs of load
states, for the isotropic models, which had additional clockwise- and counter-clockwise-shear load components,
respectively. (ii) The 25 pairs of basic load-states, for the isotropic models.

We calculated, for each of the basic load-states (LS), the sample correlation,

(1)

between  the  vector  ,  of  apex  rotations  and  the  vector,  ,  of  the
response angles for the isotropic models with the given load-state (here   denotes the mean of a given vector X). We
investigated  whether  or  not  a  correlation  was  probable,  and  if  so,  whether  or  not  that  was  more  prominent  for  a
particular load-state.

Our secondary purpose was that of investigation of methodology. We created, for a single patient, 3 pairs of
solid models, where each pair consisted of one with isotropic parameters and one with orthotropic parameters.
The 3 types of models used where: an artificial geometric model,  a model going from directly from manual
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segmentation (from CT-DICOM stacks) via minimal repairing to solid, and finally a segmentation model that
was subdued harmonic smoothing before being imported as a solid into Comsol.

We point  out  that  the  main  component  of  our  work  is  the  actual  introduction  of  the  algorithm for  constructing
artificial geometric models from MPR (multi-plane reconstruction) based on CT-scans. This yields a formalized method
to  obtain  mechanically  well-adapted  models,  which  enhance  and  focus  on  certain  mechanical  responses  which
otherwise would be diminished due to small surface variations and also render shorter meshing and calculation times in
FEM-analyses.

For the readers convenience we have collected in the Appendix, the details regarding distortion energy, material
parameters and assignment of material properties for the orthotropic models, in practice.

3.1.1. Scanning Device Details

All  chest  CT  were  preoperative.  The  scanning  device  was  SOMATOM  Definition  Flash,  Siemens  Medical
Solutions, Forchheim, Germany. The CT used 4 mm intervals. The associated software for analyzing DICOM, was
Sectra, IDS7, including the application MPR.

3.2. Measuring the Rotation of the Apex Vertebra and Sacrum to Table Angle

We did this manually, based upon the method of Aaro-Dahlborn [12], with the requirement that the initial chosen
line in the method pass the vertebral groove (for alternative methods/representatives of apex axial rotation see e.g. Lam
et al. [13]).

The  method  of  obtaining  the  rotation,  can  be  described  in  the  following  steps  (we  have  performed  the  steps
manually):

(1) Find an appropriate plane in 3D, that passes through an estimation of the center of mass of the apex (see Fig. 2).

(2) Find a line, in the plane from step (1), that passes through the neural groove (in the posterior of the spinal canal)
such that the line divides the 2D slice of the vertebral body into two parts roughly symmetric with respect to mass.

(3) The apical rotation in the sense of Aaro-Dahlborn (with the requirement that the chosen line pass the neural
groove), we shall denote it SAD, is then the angle between the line in step (2), and a line passing through the same neural
groove as in step (2) and also passing through the exterior mid of the sternum at the level of the plane chosen in step (1)
(see Fig. 3). Though our choice of the direction of the line in step (2) was made manually, we have a posteriori, verified
that our choice is compatible with the following type of symmetry about the neural groove: there is a circle in the plane
chosen in step (1), such that the circle is centered at the neural groove in that plane, and defines precisely two points on
the  interior  boundary  of  the  sacral  canal,  such  that  the  angle  at  the  neural  groove,  defined  by  the  three  points  has
bisector, that coincides with our chosen line in step (2).

Fig. (2). The first step is to estimate an appropriate plane in 3D through the apex.
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We shall also use a representative for the tilting and rotation of sacrum (and in some sense the hip), relative to the
scanner bed. Here one measures the angle, henceforth called the sacrum to table angle, between the axial horizontal
with the projection of a line passing through the anterosuperiormost part of the sacro-iliac joints, in a plane which is
tilted in line with the tilting of sacrum and the hips (see Fig. 4) according to the following outline:

Fig. (3). The apical rotation in the sense of Aaro-Dahlborn (with the requirement that the chosen line pass the neural groove), in the
text we shall denote it.It is the angle between a line passing through the neural groove and also passing through the exterior mid of
the sternum, and a line passing through the neural groove and chosen in the sense of Aaro-Dahlborn (in our case manually and we
have after manual choice also verified that a certain symmetry with respect to two equidistant points on the lamina, holds true, see
main text).

Fig. (4). See the text describing steps (i)-(iv). The upper left subfigure shows the achieved angle of the sacrum versus the bed, note
that it passes through anterosuperiormost part of the sacro-iliac joints, in the given slice. The upper right subfigure shows a plane,
which from a sagittal view passes the anterosuperior margin of S1: The blue line in the lower left figure shows the tilting chosen for
the sacrum (see main text  for more details).  The angle representing the tilt  and rotation of sacrum (or rather S1) relative to the
scanner bed, is the angle between the projection (on an axial plane) of the line in the upper left subfigure (the line depicted between
the sacroiliac joints), and the axial horizontal axis.
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(i). Move in sagittal view to a plane, parallel to the ’image horizontal’/’bed’, passing through the promontorium
sacrum (in the sagittal view this choice is exemplified in the upper right subimage in Fig. (4), yellow line). Keep
the red line approximately in the center of mass of the projection of sacrum.
(ii). In the axial view, set an auxiliary plane (red line in the axial view) passing through the most anterior two
points of the two foramina appearing in the view.
(iii). Then, fixing the choice of sagittal view described above, go to the coronal view and introduce a second
auxiliary plane that it passes through the two valley points of the superior sacral notches (see blue line in lower
left subfigure in Fig. 4).
(iv). Finally tilt the first plane through the promontorium, such that it is, in coronal view, parallel to the coronal
slice of the second auxiliary plane.
(v). The angle used for sacrum/hip-enlignment, called the sacrum to table angle, is that which in the axial plane
(upper left sub Fig. 4) is measured, between a line through the frontolateral points of the sacroiliac joints, and a
line parallel to the image bed. The line which makes that angle with the bed is called the sacrum line.

3.3. An Algorithm for Manifesting Artificial, Basic Geometric Model of Scoliosis Vertebrae.

The model extraction process from DICOM (Fig. 5), goes as follows:

3.3.1. Step 1 (Defining a Preliminary Rectangle)

(a) In the environment called MPR (Multi-Plane Reconstruction), in PACS, with the possibility of extracting tilted
plane  slices  from the  original  DICOM stacks,  we  fix  the  sagittal,  axial  and  coronal  planes,  such  that  they  pass  an
approximate center of mass of the vertebral body, for the vertebra that we wish to model. The coordinate system will be
the same in our Comsol model (i.e. based upon the scanner bed).

(b) In the fixed xz-plane we place a central line through the mid points of the upper and lower boundaries of the
vertebral  body  (the  line  is  depicted  in  the  coronal  plane  in  Fig.  (5),  upper  left  part).  The  height  of  the  orthogonal
projection of the vertebral body, in the slice, on this line, is used as the height of the auxiliary rotation body which we
shall define in (c).

(c)  Translating  this  line  such  that  it  passes  the  lower  left  point  of  the  vertebra  in  the  slice,  and  then  drawing
orthogonal lines at the lower left and upper left point of the vertebra in the slice, we obtain three sides of a preliminary
rectangle. The upper and lower sides of the vertebra in the slice, yield two angles with respect to the upper and lower
parts of the preliminary rectangle (the two angles are depicted in the coronal plane in Fig. (5). These angles will be used
in Step 2 below for defining wedge properties.

3.3.2. Step 2 (Defining a Trapezoid and Auxiliary Rotational Solid)

(a) We define a trapezoid that whose one side is parallel to a vertical axis (see upper right part of Fig. 5), The height
of our trapezoid will be the height defined in the last step. For the lower horizontal length, we extract a slice (in MPR)
approximately parallel to the lower face of the vertebral body in 3D (depicted in upper right part of Fig. 5), and in that
slice we extract the radius of an approximate circle juxtapositioned with the vertebral body in the slice. Similarly, we
obtain the upper horizontal length of our trapezoid. (b) Rotating this trapezoid about its right vertical side we obtain a
preliminary rotational body depicted directly below the trapezoid in Fig. (5).

3.3.3. Step 3 (Accounting for Wedge Properties)

Using the angles that the upper and lower sides of the vertebral body make with the preliminary rotational solid, in
the xz and in the yz-planes respectively, we use Boolean operations, with auxiliary cylinders, to manifest the wedge
properties in the xz and yz-planes respectively. This is depicted directly below the coronal slice in Fig. (5).

3.3.4. Step 4 (Tilting)

We rotate the wedged solid about the x-axis and about the y-axis respectively (it is clear that rotation about any two
axes suffices to completely describe a given 3D rotation of any vector), in order to obtain the approximated tilting in 3D
that  we observe in the MPR (this  step will  affect  the tensor which we need to input  in Comsol,  regarding material
parameters, in the orthotropic case). The rotation angles are measured in the sagittal and coronal planes as depicted in
Fig. (5). Fig. (6) shows a less detailed schematic of the artificial geometric vertebra construction described in the above
steps.
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Fig. (5). Visual aid for the described steps of the algorithm of the artificial geometric vertebra construction described stepwise in the
main text.

Fig. (6). Overview schematic of the artificial geometric vertebra construction.

3.4. Preprocessing Flow Scheme for Manifestation Via Segmentation from DICOM.

Using the approximated material parameters of Table 1, and the simplifications described below, we can summarize
the flow chart of going from DICOM stacks to Comsol compatible meshed solid, in Fig. (7). FreeCAD/Meshlab), these
steps are not included in the flow chart. Using these middle programs we refine, repair and convert to solid and, most
importantly, convert the format to a CAD-compatible format, which is then imported into Comsol. There we attempt to
mesh it. In most cases, this failed and we had to go back to the middle program for further repair and simplification.
Then  we  also  constructed  a  model  that  was  simplified  further  using  a  built-in  harmonic  smoothing  application
(rendering  smoother  and  more  curved  surfaces).
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Table 1. Patient specifications. The sacrum to table angle is written as positive if the sacrum line when view from above along
the z-axis, is rotated clockwise. All patients have primary right-convex thorakal cobb-curve, i.e. the curvature in the coronal
plane is right convex. The age is that at pre-op CT.

Patient Convexity Diagnosis subtype Apex level Cobb angle Apex rotation Sacrum to table angle Age
1 Right-convex Idiopathic T9 47 33 -1.5 17
2 Right-convex Idiopathic T7 46 9.7 7.3 18
3 Right-convex Idiopathic T10 82 49.9 0.4 15
4 Right-convex Idiopathic T8 50 22.9 2.1 16
5 Right-convex Idiopathic T9 18 40.5 2.7 14

Fig. (7). We choose to segment initially in ITK-snap. From there we export STL-formats into several middle programs (mainly
CAD-based/compatible programs such as FreeCAD/Meshlab), these steps are not included in the flow chart.In the lower left we see a
direct  manual  segmentation.  We  also  constructed  (lower  right)  a  model  that  was  simplified  further  using  a  built-in  harmonic
smoothing application.

3.5. Choice of Load-States

We investigated load-states with and without additional applied shear component (in the axial rotational sense),
specifically we looked at five different load-states without axial/rotational shear, each corresponding to a reasonable
situation which a spine could undergo, and then we used the same settings but with simultaneous shear (axial rotational)
stress  added  to  the  processus  spinosus.  The  latter  shear  addition  is  done  both  clockwise  and  counter-clockwise
respectively. This yields a total of 5x3=15 load-states. The first four non-shear load-states where set up by fixing the
lower portion of the bottom vertebra, and subdividing the upper portion of the uppermost vertebral body, into four parts
(in order to do this geometrically and anatomically consistent, we defined a ’horizontal’ line to be a line parallel to the
enlignment of the sacrum/hips (Section 3.2), the so called sacrum to table angle gave us this latter line. The subdivision
is based upon an approximate circle determined using the ventral part of the vertebral body in the chosen slice (by
ventral  part  we  mean  up  to  the  ventral  junction  with  the  processus  spinosus  in  the  given  slice).  Then  translate  the
horizontal line such that it approximately passes through the center of the above circle for the uppermost vertebra in the
model (in an appropriately chosen apical slice) and we automatically obtain a vertical line in the chosen slice by using
the perpendicular to our ’horizontal’. This gives us precisely four quadrants, Fig. (8). For the five non-shear load-states,
the lower face of the bottommost vertebral body was used as fixed constraint, the upper face of the uppermost vertebral
body was divided into four quadrants. In each of the first four load-states, precisely one of the quadrants, was subdued
to downward stress. The fifth load-state is simply, fixing the lower face of the bottommost vertebra, and applying an
evenly distributed stress on the upper portion of the uppermost vertebral body, i.e. all four quadrants of Fig. (8) are
stressed. The additional shear analysis was done by applying shear stress on circular lateral portions, counter-clockwise
and clockwise respectively (Fig. 9).
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Fig. (8). Illustration of how the sacrum to table angle was used to obtain four quadrants, which were in turn used to define the load-
states.

Fig. (9). The lower face of the bottommost vertebra was fixed, and we subdivided the upper face of the uppermost vertebral body
into  four  quadrants.  In  each  of  the  first  four  load-states  (denoted  as  load-states  I-IV),  precisely  one  of  the  quadrants  I-IV,  was
subdued to downward stress. The fifth load-state is obtained by fixing the lower face of the bottommost vertebra, and applying an
evenly distributed stress on the upper portion of the uppermost vertebral body, i.e. all four quadrants of Fig. (8) are stressed. The
additional  shear  analysis  was  done  by  applying  shear  stress  on  circular  lateral  portions,  counter-clockwise  and  clockwise
respectively.  The  lower  part  of  the  image  illustrates  this  for  load-state  V.

I

IIIII

IV

'Sacrum line'

'Translated sacrum line'
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4. RESULTS

Table 1 gives some basic specifications on our patient group and measurement result from the measurements made
from the DICOM data using PACS, and Fig. (10) gives an illustration of the models. The similar calculations in Table 2
for the states with additional shear and for the orthotropic case where not expected to yield any better linear relations,
and we did not overall see statistically significant differences in our t-tests.

Fig. (10). Illustration of the underlying models without applied stresses.

Table 2. Correlation coefficients between the apex rotation and apex top response angles for the 5 basic load-states.

Load state 1 2 3 4 5
Corr.coeficcient 0.79 0.95 0.67 0.11 0.49

4.1.  Results  of  Response  Angle  with  Respect  to  Apex  Rotation  for  the  Artificial  Geometric  Model,  the
Comparison between Isotropic and Orthotropic Modeling and the Analysis of the Effect of Additional Shear

Table 2 and Figs. (11, 12 and 13) for the apex top response angle results. Table 3 gives the results regarding the
analysis  of  additional  shear  components  in  the  loads  and  also  the  comparison  between  isotropic  and  orthotropic
modeling.

Fig. (11). Apex top response angle with respect to apex rotation for the basic load states 1-5.
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Fig. (12). The load state with highest correlation coefficient

Table 3. Statistical pairwise t-tests for difference in apex top response angle, for variations of the models using the basic 5
load-states. Based upon the mean of the variable obtained by subtracting the stochastic variable corresponding to the first
type of model, from that corresponding to the second type of model (the Matlab built-in function ’ttest’ was used).

Isotropic models, basic states versus with
additional clockwise shear components n=25, p-value ≈ 0.73

Isotropic, basic states versus with additional
counter-clockwise shear n=25, p-value ≈ 0.79

Isotropic, with additional counterclockwise
versus clockwise shear n=25, p-value ≈ 0.97

Isotropic versus orthotropic models n=25, p-value ≈ 0.084

Fig. (13). Illustration of distortion energy profiles associated to Figure 12

4.2. Method Investigation Results, Involving Segmentation Models and Comparison in Calculation and Meshing
Times, with the Artificial Geometric Models

In our method investigation involving segmentation model comparison, we used a HP Elitebook 8540w, with 8Gb
RAM. Meshes of type free tetrahedral coarse were used in the mesh-time comparisons analysis.  In the test-runs on
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single  apex for  the  manually  segmented model,  mesh of  type coarser  were  used,  due to  a  shortage of  RAM in our
equipment. Even so, it was clear that the calculation times were larger than for the other two methods. It makes sense to
analyze  the  meshing  time  also  separately  (even  though  the  simulation  time  of  a  test  run  often  includes  a  meshing
process)  because  first  of  all,  the  meshing  process  is  completely  independent  of  whether  or  not  one  is  modeling
isotropically or orthotropically with respect to the material parameters, and second of all, once a mesh is constructed,
different boundary and fixed constraints will render different levels of complexity depending on how much of the rough
and irregular surfaces are included for the segmentation models. In our test-runs for comparing calculation times, we
did not use all three vertebrae and two discs, but rather only the apex. As fixed constraint we fixed the lower part of the
vertebral body, and as boundary load we applied 1 MPa in the negative z-axis-direction, to the intersection of the top of
the  vertebral  body,  with  a  cylinder  whose  radius  was  adapted  to  the  vertebral  body.  Fig.  (14)  for  the  set-up  and
execution  of  test-runs  for  the  apex  with  isotropic  material  parameters.  We  performed  the  test  runs  with  isotropic
parameters and orthotropic parameters separately.  The meshing times are given in Table 4  (recall  that  the meshing
process is completely independent of whether or not one is modeling isotropically or orthotropically with respect to the
material parameters). The calculation times are given in Table 5. Each of the time values in both tables was reproduced
(±1 seconds) three consecutive times.

Fig. (14). The figure depicts the set-up and execution of test runs with isotropic parameters, for the ordinary manual segmentation
model, the segmentation model using harmonic smoothing and the artificial geometric model respectively. The test load is 0.05 MPa
and applied in the negative z-direction, on the intersection of the top face of the model, with a given cylinder. The fixed constraint is
the intersection of the lower part the vertebrae with a user-defined lower cylinder. This type of test run will process faster than if we
were to include 3 vertebrae and discs but will suffice to make clear whether or not a difference between isotropic and orthotropic
modeling  will  render  practically  tangible  different  calculation  times,  and  also  whether  or  not  the  gap  between  meshing  times
compared to artificial geometric modeling applies also for calculation times. The result of the test run is displayed for the surface and
also using slice planes.
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Table 4. Comparison of meshing times for the apex in three different models.

– Lower Vertebra Apex Upper Vertebra
Harmonically smoothed model 38 sec 25 sec 13 sec

Manually segmented model 39 sec 37 sec 15 sec
Artificial geometric model <0.5 sec <0.5 sec <0.5 sec

Table 5. Comparison of calculation times for test runs on the apex in three different models, using isotropic parameters and
ortotropic parameters respectively. Due to a shortage of RAM in our equipment, the test-runs for the manually segmented
model were made with a mesh of type coarser, whereas the others used type coarse. Each of the values was reproduced ±2
second three consecutive times.

– Orthotropic Isotropic
Harmonically smoothed model 31 sec 30 sec

Manually segmented model 49 sec 49 sec
Artificial geometric model 5 sec 5 sec

5. DISCUSSION

We view this as a method article, the number of patients is too small to draw statistical conclusions using correlation
coefficients, but we do obtain indications on which load-states could be of interest for further experiment set-ups. Also
we do not necessarily expect to find linear relations between our response variable and apex rotation but an analytic
relation could exist.

The main pros of our method involving artificial geometric models is of course that it enhances the semi-global
mechanical  responses  to  applied  stresses  and  that  it  requires  less  calculation  times  due  largely  to  less  complicated
interfaces.  The main cons are that  local  details  are lost  in  the process (which for  example should be present  in the
mechanical analysis of screws and rods interacting with the vertebrae or in the study of morphology). Note that the
Cobb angle is a parameter that is not local to the apex, indeed the neighbours of the apex and their relation to it, do not
necessarily reflect the severity of the total coronal curvature. On the other hand, the apex rotation, as we have used in
this paper, is strictly local and confined to the apex itself, and thereby a more logical choice of deviation parameter (for
our purposes). Here are some restrictions that are made in the pre-processing and processing stages:

The  segmentation  models  where  reworked  in  several  repairing  loops  due  to  the  difficulties  in  obtaining
acceptable meshes (without spikes and holes).
The  material  parameters  are  only  approximations  based  upon  previous  literature.  The  bony  tissues  and
intervertebral discs are very complicated materials,  and there is currently no method of obtaining consistent
ascertained constants for stress-strain properties for such complicated materials.
Three vertebrae (the apex together with the two most adjacent vertebrae) were included in the study models,
hence our analysis is semi-local and focuses on the apex.
No ligaments, tendons, nucleus pulposus or end-plates on discs were directly included in the simulation, the
project  is  based  on  very  basic  and  simple  modeling,  which  can  in  the  future  be  developed  into  a  more
sophisticated  one.
The calculations times for the segmentation models where done via Wi-fi license, in order to be able to access
an important plug-in that enables compatibility with certain CAD features. This means that there is a possibility
that if the internet reception would vary in intensity, then so might the calculation times (however we noted
carefully at each run, that the indicator for the connection showed full spikes).

For mechanical analysis of manual segmentation models, we would need to adjust or replace our response variable,
because the local irregularities should give false peaks if one only looks at slices of the original 3D-data. It would then
possibly be more appropriate to extract some thin volume which one subdivides and performs integration of distortion
energy over the elements obtained by the subdivision.

We expected, due to our choice of variable, that additional shear stresses would not render a linear relation between
our response variable and apex rotation, as opposed to strictly transversal (rather vertical) stresses. This was verified by
pairwise t-tests. The reason additional shears were of less interest is due to the lack of explicit surrounding tissue and
ligaments  in  our  model.  However,  we  had  no  prior  expectation  on  whether  or  not  there  would  be  a  statistically
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significant difference between isotropic and orthotropic modeling (which it turned out in general not to be the case).
Obviously, the small amount of patient models means that we cannot draw any conclusion about the linearity between
our response variable and apex rotation, but we can at best say that we have obtained indications that a correlation could
exist between apex rotation and the response variable, for some appropriately chosen load-state, and our results indicate
what requisites such a load-state should have.

We  note  that  all  our  patients  had  right-convex  scoliosis  and  a  slight  local  lordosis  at  the  apex.  The  load-state
rendering  the  best  correlation  coefficient  is  load-state  2,  and  it  is  the  only  among  the  5  basic  load-states  with  the
following properties:

(1)  In  the  coronal  plane,  the  stress  counteracts  the  curvature  (in  the  sense  that  it  lies  on  the  thicker  part  of  the
wedged slice of the apex).

(2) In the sagittal plane, the stress counteracts the curvature (in all cases a slight lordosis). If this observation can be
reinforced  in  the  future  with  more  substantial  evidence,  we  do  not  have  a  good  explanation  for  part  (2)  of  the
observation.

CONCLUSION

We introduce an algorithm for constructing artificial geometric models from CT-scans and thereby a formalized
way to obtain models, which enhance and focus on certain mechanical responses which otherwise would be diminished
due to small surface variations. Calculation and meshing times appear much shorter. We chose a particular response
variable  based  upon  distortion  energy  distribution,  which  our  pairwise  t-tests  show  is  non-trivial,  and  is  foremost
sensitive to the type of transversal stresses we are interested in. The reason additional shears were of less interest is due
to the lack of explicit surrounding tissue and ligaments in our model. The method is inappropriate for analyses where
the local roughness and irregularities of surfaces are wanted features. We view this as a method article, the number of
patients is too small to draw statistical conclusions using correlation coefficients, but we do obtain indications of e.g.
which load states are promising candidates with regards to the most common patient specifications. The load-state for
which we obtained highest correlation between apex rotation and our chosen response angle, was one where the stress,
locally, counteracted the coronal curvature and simultaneously counteracted the sagittal curvature. In general, our model
does not render different results for isotropic and orthotropic material modeling respectively. By creating three different
types of models for a single patient we illustrate the gain in mechanical simplicity, but a loss in detail using our artificial
models.  We  have  pointed  out  in  the  article  that,  if  we  would  like  to  perform  analogous  analysis  on  manually
segmentation models in future work, an integration process with appropriately chosen volume, at the interesting faces of
the apex, and subdivision of that volume, could be one possible way to substitute the apex top response angle.
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APPENDIX

Distortion Energy
The failure theory of  von Mises,  based upon maximum distortion energy,  roughly assumes that  some notion of

’failure’,  of  a  medium under stress,  occurs when the maximum distortion energy at  a  reference point,  in a  stressed
material reaches the value of the maximum distortion energy at the failure point in simple uniaxial tension (this failure
stress is denoted by σfailure tensile), and the distortion energy is given by the left hand side of the following equation,

(A1)

Where σi, i = 1, 2, 3, denote the principal stresses. Akin [14], p.267, defines the von Mises stress as the square root
of, one half of the left hand side of equation 2, namely,

(A2)

and relates the von Mises stress to the distortion energy. Although the von Mises energy definition was constructed
based on the isotropic case, one can use the same definition for any case when the principle stresses are calculated, and
it is then an approximative entity for describing distortion energy matters.

Material Parameters
For the Comsol model one must have certain physical constants and parameters (or approximations of them) at

hand.  Bones  and  other  human  tissue  are  very  complex  materials  chemically  and  physically.  Bone  is  in  general  a
connective tissue consisting of cells embedded in a mineralized matrix including collagen fibers which are impregnated
with calcium phosphate mainly as hydroxyapatite, as well as carbonate, citrate, sodium, and magnesium. Bone is in
general composed of about 75% inorganic material and 25% organic material. Different types of bones vary in physical
properties, e.g. the diaphyses of the tibia and femur have a rather large marrow, and a complicated Haverian system of
canals, whereas such features are much less prominent in e.g. the frontal cranium. One of the features of certain bones,
such as diaphyseal bones and also to smaller extent, the vertebral bodies that encourages an orthotropic modeling, is the
fact that osteones have concentric lamellae that induce an intrinsic main/longitudinal axis. The densities of bone and
vertebral discs are sometimes required inputs for defining a material in FEM models, and in such case we have used
1908 kg/m3 (the software built-in value of density of generalized bone). For the intervertebral discs, we use, following
Chen & Thouas [15],  p.400,  the density of  dry collagen to be approximately 1300 kg/m3, and we approximate the
density equivalent composition as 60% water and 40% collagen, (in fact, both the composition for the annulus fibrosus
and nucleus pulposus contain also proteoglycan and third main component, thus we have made an approximation of
using the dry weight of collagen to approximate that of proteoglycan). Even after approximations regarding mechanical
and physical properties there remains other complications such as age and gender, see Ebbesen et al. [16]. We mention
some research articles including material constant estimation, see e.g. Antosik et al. [17], Kurutz et al. [18] and Nédli et
al. [19]. Other sources in which there appear material constant estimates are Keaveny et al. [20], Ch.8, Currey [21] and
Frankel & Nordin [22]. Fracture stress of a general bone has in some contexts been estimated to be 14±25% (MPa), see
Vable [23], p.3.

However it is commonly known that bones behave anisotropically and under tension, and viscoelastically (i.e. the
stress-strain curves depend upon the rate of load application), see e.g.  Frankel & Nordin [22]. The primary sources
however, used in the collecting of material constants and insight to the material properties for us have been: White [25],
Kurutz [18], Wilke et al. [26], Stemper et al. [27], Schmidt et al. [24], Ambrosio & Tanner [28] (and indirectly Brown,
Hansen and Yorra [29]), and the references found in these later articles. Interpretation of such data requires a prescribed
main axis (in the case of our cited articles, the z-axis) in the coordinate system for which the data holds true, and a basic
knowledge of  the  anatomy and structure  of  bone makes it  clear  that  the  main axis  can,  for  the  epiphyseal  case,  be
chosen along the Haverian longitudinal axis, and for vertebra, as one passing through the center of the vertebral body
and approximately tangential to the spinal cord. We have chosen to mainly use the constants gathered from different
literature in Schmidt et al. [24]. Note that such approximations impose the difficulty that osteoporosis, if not taken into
account, may distort the authenticity of the simulation.
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Table A1. Some material constant approximations based upon Kurutz [18], Schmidt et al. [24] and the references therein. Y
denotes the (determining elements of the matrix of) Young modulus (elastic moduli) in MPa, and v the Poisson ratio.

The orthotropic model

The orthotropic model Y=3500, ν=0.25, Density1≈1908 kg/m3

Intervertebral disc2 Y≈252, ν≈0.47, Density3≈1120 kg/m3

1Built-in approximation, see main text.
2 Based upon Kurutz [18] p.219-223, elastic fiber approximation (Y = 500,ν= 0.45) and fluid-like solid for nucleus pulposus (Y = 4, ν = 0.50), mean
value was used.
3Approximated as 60% water and 40% collagen, see main text.

Assigning Material Properties for the Orthotropic Models, in Practice
The feature we use in Comsol, starts with applied force, applied loads and fixed constraints. The output is a version

of  distortion  energy  at  each  point  (we  use  stationary  analysis,  as  opposed  to  time-dependent).  The  calculations
performed  by  Comsol  thus  requires  the  input  of  material  parameters  in  terms  of  either  compliance  or  elasticity
components. Assuming linearly elasticity, there exists a tensor (see e.g. Irgens [30]), S, let us denote its components by
sijkl, interpreted as a fourth order tensor, which acts on strain tensors (ε, which are second order tensors in their own
right)  and yields  the  associated  stress  tensor  (σ,  also  a  tensor  of  second order)  and is  sometimes  referred  to  as  the
elasticity tensor. The elasticity tensor is the inverse (in the appropriate sense) of the so called compliance tensor, let us
denote it C. Both the strain and stress tensors are symmetric, thus each is completely determined by 6 of its components
(namely σij = σji for i≠j, so we only need to know the upper triangle part of a matrix representation of σ), and we can
represent C by 36 components in matrix form, using the so-called Voigt map of indices:

(A3)

(A4)

(A5)

which induces,

(A6)

The tensors C (and analogously S) can be shown (see e.g. Kittel [31] or Zehnder [32], p.15) to be symmetric in the
sense that,

(A7)

The relation between the arrays S and C can be given in tensor form, is given by (see e.g. Barnett et al. [33], p.15),

(A8)
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where  δij  for  i=j,  and  zero  otherwise.  The  right  hand  side  of  the  last  equation  has  a  6x6  representation,  when
applying the Voigt map to the index pairs (i,j) and (n,m).

Table A2. Voigt map to the index pairs (i,j) and (n,m)s

η(ij)=1 η(ij)=2 η(ij)=3 η(ij)=4 η(ij)=5 η(ij)=6
η(ij)=1 1 0 0 0 0 0
η(ij)=2 0 1 0 0 0 0
η(ij)=3 0 0 1 0 0 0
η(ij)=4 0 0 0 ½ 0 0
η(ij)=5 0 0 0 0 ½ 0
η(ij)=6 0 0 0 0 0 ½

Let η1,η2,η3, be indices obtained by applied the Voigt map to the index pairs (i,j), (k,l) and (n,m) respectively, and
Cη1η2, Sη1η2 let denote the tensor components after having transformed the indices. Then the left hand side of equation
(A8) can (using the symmetry relations of equation (A7)) be described as,

(A9)

Combining the last two representations we obtain 36 equations which can be represented in matrix form according
to (note that some text books prefer to use c for the elements of the elasticity tensor, we have chosen to use c for the
elements of the compliance tensor),

Which is equivalent to,

In other words, as square matrices Cvoigt, Svoigt, satisfy, (Cvoigt)-1 = Svoigt For an orthotropic material, we can (given the
Young/shear moduli and Poisson ratios: Yxx, Yyy, Yzz, Yyz, Yxz, Yxy, Vxy, Vyz, Vxz for appropriate choice of basis, write the
compliance matrix, in Voigt notation as,
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which will be symmetric. In our case, based upon the references we used, we specifically consider the case Yxx = Yyy,
Yyz, Yxz (such a model is sometimes called transversely orthotropic) and also Vyz = Vxz. Note that, by symmetry, Vxy = Vyx,
Vzy = Vzx and (again in the special case within which we work) If C = [Cijkl] is the compliance array (34 elements), we
can for a given rotation in 3D, given by say the matrix R; use the relation (see e.g. Irgens [29], p.88),

(A10)

where  can be interpreted as the compliance matrix of an orthotropic material with respect to the new
basis R(e1, e2, e3)

T We can then use Voigt notation to extract the compliance and elasticity array for a ’tilted’ orthotropic
material  using Comsol.  As an example,  rotation about  the x-axis  of  Ø1  degrees and rotation about  the y-axis  of  Ø2

degrees respectively are given (if we choose a setting where x increases to the right, y points out of the screen and z
increases upward, thereby the following matrices will  for positive angles give clockwise rotation, when the axis of
rotation points toward observer) by the orthogonal transformation matrices,

The combined transformation matrix becomes, R = Rx, Ø1Ry, Ø2 Using the above formulae, a Matlab code was written
in order to calculate the input elasticity matrix elements for tilted vertebrae in the orthotropic models.
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