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Abstract:

Background:

While the classification of multifunctional finger and wrist movement based on surface electromyography (sEMG) signals in intact
subjects can reach remarkable recognition rates, the performance obtained from amputated subjects remained low.

Methods:

In this paper, we proposed and evaluated the myoelectric control scheme of upper-limb prostheses by the continuous recognition of
17 multifunctional  finger  and wrist  movements  on 5 amputated subjects.  Experimental  validation was applied to  select  optimal
features and classifiers for identifying sEMG and accelerometry (ACC) modalities under the windows-based analysis scheme. The
majority vote is adopted to eliminate transient jumps and produces smooth output for window-based analysis scheme. Furthermore,
principle component analysis was employed to reduce the dimension of features and to eliminate redundancy for ACC signal. Then a
novel metric, namely movement error rate, was also employed to evaluate the performance of the continuous recognition framework
proposed herein.

Results:

The average accuracy rates of classification were up to 88.7 ± 2.6% over 5 amputated subjects, which was an outstanding result in
comparison with the previous literature.

Conclusion:

The proposed technique was proven to be a potential candidate for intelligent prosthetic systems, which would increase quality of life
for amputated subjects.

Keywords: Accelerometry, Surface electromyography, Continuous recognition, Principle component analysis.

1. INTRODUCTION

Limb amputation is a major cause of disability in the world [1]. The key issues of accomplishing practical upper-
limb prosthesis are functionality, controllability and cosmetics [2]. In recent decades, these prostheses controlled by the
surface electromyography (sEMG) containing rich information of neuromuscular activity have been applied to replace
those  controlled  by  the  original  motor  commands  in  a  noninvasive  way  [2,  3].  Gradually,  these  approaches  have
developed  from  control  of  simple  functional  prosthesis,  such  as  wrist  flexion  and  extension,  to  multifunctional
prostheses [3]. In spite of these technological advancements, the existing prostheses cannot fully meet the actual needs
of the amputees in terms of dexterity. Hence,  how  to  control a  multifunctional  and  dexterous  prosthesis  becomes  a
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tremendous challenge.

Peerdeman et al. [4] indicated that the various approaches proposed by the majority of studies were obtained based
on intact  subjects.  And 4 to  16 electrodes,  as  the  case  maybe,  would be placed on the  mid-portion of  the  forearm.
Among the existing state-of-the-art classifiers, linear discriminant analysis (LDA), artificial neural networks (ANN) and
support vector machines (SVM) algorithms play significant roles in predicting the user’s intended movements with high
accuracy [5]. In our previous paper [6], we obtained an excellent classification rate at 98.6% on five hand movements
using intact subjects. However, it is still an unproved issue that the results acquired on intact subjects can apply equally
to trans-radial amputated subjects (TRAS) [7]. Due to the practical and ethical issues lay in this field, the reports on the
real-time prosthesis control especially for amputated subjects are rather limited. Moreover, some items should be noted
as follows. Firstly, it is a suffering task to think and mimic the finger and wrist movement with amputated upper-limb
throughout  a  few  hours.  Secondly,  different  amputation  levels  impact  the  performance  of  classification.  Thirdly,
amputees differ in learning ability. Thus, different scientific training treatments should be employed on different TRAS.
In  a  general  view of  literatures  using TRAS,  Momen [8]  showed an  approximately  87.5% accuracy rate  for  4  arm
classes on only one amputee. A recent study included six TRAS and used 64-channel amplifier (12 movements, 87.8%
accuracy [9]). Schultz et al. [10] demonstrated an 87.8% accuracy rate on 5 TRAS over 10 movements. It should be
emphasized that the results obtained from amputees still remain to be improved.

In recent years, a few researchers paid close attention to accelerometry (ACC), which is relatively low-cost and
easily integrated in a prosthetic  socket.  Zhou et  al.  [11] indicates that  the EMG signals  and tri-axial  accelerometer
mechanomyography signals can reduce the effect of limb position  variation  on  classification  performance.  Fougner
et al. [12] demonstrated that ACC provided useful supplementary for prosthesis controllers.

In  this  paper,  an  efficient  continuous  recognition  scheme  of  multifunctional  finger  and  wrist  movements  is
proposed. Primarily, a root-mean-square (RMS) filter had been employed on the sEMG signals to smooth the data.
Considering the practical applications in real-time control, a sliding window was employed. It should be emphasized
that  majority  vote  is  adopted  to  eliminate  transient  jumps  and  produces  smooth  output  for  window-based  analysis
scheme. Subsequently, we followed the recommendation to use sEMG in conjunction with ACC as control modality
[6]. However, the placement and regular orientation of the electrodes would cause redundant information. Principal
component analysis (PCA) was hence utilized to reduce the dimension of features and to eliminate the correlation of
ACC modality,  which  improved  the  classification  rate.  Six  time  domains  features  and  one  time-frequency  domain
feature are calculated respectively as the feature vectors of each sEMG segment. The features of sEMG and ACC are
then fed into four types of classifiers. Finally, according to the experimental results, the significant features of sEMG
and ACC were selected and fused into an integrated feature and then passed into the best-performing classifier, that is,
SVM for ultimate classifications.

The rest of the paper is organized as follows: section 2 presents this details of the scheme for data analysis and
feature selection is contained in this part as well; the results are demonstrated and assessed with a novel evaluation
criterion in section 3 and discussed in section 4.

2. MATERIALS AND METHODS

2.1. Data Acquisition

The database utilized in this paper is the second version of publicly available Non Invasive Adaptive Prosthetics
(NinaPro) database [13], which is determined to promote the state of sEMG controlled hand prosthetics for TRAS. The
recruited subjects were explicitly instructed to think or mimic (if available) movies shown on the screen which was used
as visual stimulus. After the stage of training, subjects were asked to perform 6 consecutive repetitions of 50 different
movements. Each movement repetition lasted 5 s. The interval of each  repetitive movement was a rest posture  lasting
3 s. During the process of experiments, the EMG data was continuously acquired using 12 DelsysTM Trigno wireless
electrodes at a rate of 2 kHz. Meanwhile, arm dynamics were recorded by a 3-axis accelerometer which was integrated
into each of these electrodes. Eight Electrodes (from 1 to 8) are equally spaced around the forearm; electrodes 8 and 9
are positioned on the main activity spots of the flexor and the extensor digitorum superficialis, electrodes 11 and 12
were also placed on the main activity spots of the biceps brachii and of the triceps brachii. The details on the acquisition
protocol and specific movements were described in [14]. Before making data publicly available, the sEMG had been
cleaned of 50 Hz power frequency interference. Subsequently, the sEMG and ACC data streams were super-sampled to
the relatively higher sampling frequency (2 kHz).
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In  this  paper,  we  only  employed  the  Exercise  B  of  database  3  including  data  acquired  from  the  17  hand/wrist
movements on 5 male TRAS. The details of the 17 movements are described in Table 1. The clinical characteristics
including of the amputated subjects are described in Table 2 [14], where the DASH (Disability of the Arm, Shoulder
and Hand) score is an evaluative outcome measure for the upper extremity musculoskeletal conditions of patients.

Table 1. Description of the 17 movements.

Hand and wrist movements
0 Rest
1 Thumb up
2 Extension of index and middle finger
 while flexing others (cf. “V-sign”)
3 Flexion of ring and little finger while
extending others
4 Thumb opposing base of little finger
5 Abduction of the fingers
6 Fingers flexed together in fist

7 Pointing index
8 Adduction of extended fingers
9-10 Wrist supination and pronation
(rotation axis through the middle finger)
11-12 Wrist supination and pronation
(rotation axis through the little finger)
13-14 Wrist flexion and extension
15-16 Wrist radial and ulnar deviation
17 Wrist extension with closed hand

Table 2. Clinical data of hand amputated subjects.

Subject Amputated
Hand

Age Height
(cm)

Weight
(Kg)

Remaining
Forearm (%)

DASH Score Years since
Amputation

1
2
3
4
5

Left
Right

Right & Left
Right
Right

35
50
34
44
45

183
178
166
180
183

81
82
68
95
75

70
30
40
90
90

15.18
22.50
86.67
3.33
12.50

6
5
1
14
5

2.2. Preprocessing

2.2.1. Filtering

Initially, in this work, the data was decimated at a sub-sample rate of 5. Then a high-pass Butterworth filter with
corner frequency of 20 Hz was utilized to filter the sEMG data. In order to smooth the data, a root-mean-square (RMS)
filter had been employed on the sEMG signals, which was equivalent to rectifying the sEMG amplitude by averaging
over a moving window of 80 long samples, namely 200ms, considering the sub-sample frequency and relinearization by
taking the square root [15, 16]. Simultaneously, the ACC data was low-pass filtered at a cutoff frequency of 5 Hz by a
zero-phase second order Butterworth filter in order to remove high frequency noise components.

2.2.2. Relabeling

It is unrealistic to make the subjects perfectly mimic the kinematics of the video stimulus due to human reaction
times. The author of the database had applied an offline generalized likelihood ratio algorithm to correct the resulting
erroneous  movement  labels,  which  realigned  the  movement  boundaries  by  maximizing  the  likelihood  of  a  rest-
movement-rest sequence [3].

2.3. Analyzing

2.3.1. Window-based Analysis Scheme

The signals of all channels were split into sliding windows in accordance with the real-time control scheme for
multifunction myoelectricity proposed by Englehart et al.  [17] as displayed in Fig. (1).  For each sliding window, a
selected feature vector was calculated and fed to a pattern classifier which could achieve outstanding classification
performance.  L.  Smith  et  al.  [18]  indicated  that  longer  window  resulted  in  higher  accuracy  at  the  cost  of  longer
processing  delays  (the  value  of  processing  delays  in  this  paper  was  computed  on  a  2.5  GHz AMD SempronTM  X2
processor); meanwhile, the optimal window length was recommended to be in the range of 150-250 ms. Considering the
configuration of processor and real-time prosthesis control in future, the overlap increment should be longer than 20ms.
Consequently,  a  250ms  (i.e.100  samples)  sliding  window  with  a  25  ms  (10  samples)  incremental  window  was
considered. Window-based analysis scheme are described in Fig. (1). (For clarity reasons, the figure displays only three
out of twelve electrodes. The data is decimated at a sub-sample rate of 10).



104   The Open Biomedical Engineering Journal, 2016, Volume 10 Liu et al.

Fig. (1). Illustration of the window-based analysis scheme producing a decision stream.

Then, the following experiment applied the majority vote (MV) to post-process the successive dense stream of test
sequence generated by overlapped segmentation. The majority vote can be described as follow: (1) make a decision for
(100 samples) sliding window every 25ms; (2) make N continuous decisions; (3) vote for the N decisions; (4) The
decision of the maximum votes represents the final decision. The MV is an effective post-processing mechanism that
eliminates  transient  jumps  and  produces  smooth  output  for  window-based  analysis  scheme  [19].  However,  the
acceptable  control  delay in  output  should be less  than 300ms.  The parameter  k  (number  of  the MV) is  constrained
within the following inequality:

(1)

Where, increment is the overlap increment between two adjacent windows (25ms). Here, MV with k=3 was adopted
to smooth the results (i.e. making a decision every 75ms).

2.3.2. Feature Extraction

Feature  selection  is  an  essential  stage  in  sEMG  classification.  And  the  capability  of  presenting  the  features  of
different movements and the computational load in real-time control shall be focused. A significant amount of features
widely used in myoelectric control design can roughly be divided into three categories, namely time domain, frequency
domain, and time-frequency domain [19]. However, it had been proved that frequency domain features usually perform
poorly when compared with the time domain features [20].

The  most  successfully  used  features  in  time  domain  is  the  Hudgins  feature  set  [20,  21].  Following  the
recommendations in [20], we had selected six sEMG features including Mean Absolute Value (MAV), Modified Mean
Absolute Value 1 (MAV1), Variance (VAR), Root Mean Square (RMS), Waveform Length (WL), and the first four
autoregressive (AR) coefficients. Waveform Length is simply the cumulative length of the waveform over the time
segment defined as:

(2)

where Δxk  = xk  -  xk-1  (difference in consecutive sample voltage values). MAV1 is a robust modification of Mean
Absolute Value with weighting window function (wn). It is calculated by:

(3)
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In addition, according to the classification performance of each single feature, a combination of different single
features was also applied to explore more robust features.

Wavelet packet transform (WPT), an extension of discrete wavelet transform, is a more advanced representation in
time-frequency domain. The transform is able to decompose a signal using the wavelet function at different levels,
resulting in high-dimensional coefficients. In this work, we employed 3-level wavelet decomposition and Daubechies 3
(db3) as mother wavelet, then calculated the variances of each wavelet packet decomposition coefficient of the last level
as part of sEMG features [6].

For ACC modality, we applied the mean value (MEAN) that performed excellent in previous work [11]. PCA was
applied to reduce the dimension of feature for ACC data and over preliminary trails to ensure the optimal threshold to
capture the tradeoff between reduction size and discrimination rate.

2.3.3. Classification

In this section, the classifiers considered here have all been successfully used in conjunction with sEMG signals,
including linear discriminant analysis (LDA), k-nearest neighbors (k-NN) with k ϵ {1, 3, 5, 7, 9 and 11}, random forests
(RF) and support vector machine (SVM) with a radial basis function (RBF) kernel as following:

(4)

For  parameter  optimization,  the  4-fold  cross  validation  scheme  was  used  to  evaluate  the  best  choice  of  SVM
parameters, namely penalty factor C and parameter γ of kernel function. In every experiment, 10-folds cross-validation
was conducted. Following the same protocol presented by the authors of the database [13], we also adopted repetition 2
and 5 for testing set, so the remaining four repetitions created training set. Considering computational feasibility, the
window sets for training and parameter optimization were subsampled at regular intervals of 3 and 5 respectively (i.e. a
window increment of 75 ms and 125 ms). Then, 4 groups were alternately selected as training set to train classifier
model  and the other  2 groups were used to test  the established model.  Taking the distributional  differences among
repetitions into consideration, each of the folds corresponded to one of the four training repetitions instead of random
splitting of the folds. In order to find an optimal configuration, parameters were selected using a two-stage grid search
via coarse grids, and then fine grids [22]. In the coarse grids, C ϵ {2-8, 2, 22, 23, 24, and 25} and γ ϵ {2-8, 2-4, 2-2, 2, 22, and
23}. In the fine grids, these selected values in coarse grids were examined in a range of ±5%, ±10%, ±15%, and ±20%.

2.4. Evaluation

In  addition  to  classification  accuracy,  a  novel  metric  was  also  employed  to  evaluate  the  window-based  control
performance. Movement error rate (MER) proposed in [23] for offline evaluation of myoelectric control systems was
utilized in this section. MER is a normalized version of edit distance used to count the minimum number of insertions,
deletions and substitutions required for two sequences to match necessarily. Before computing the MER, a key process
should  be  taken  to  regard  movements  rather  than  windows  as  the  atoms  by  erasing  adjacent  duplicates  in  both
sequences of true labels and the predict labels. Subsequently, the edit distance (MER) of two processed sequences was
measured as defined as followed:

(5)

According to the definition of MER, lower MER implies that the predicted movements (not windows) achieve a
higher similarity with true movements, namely the approach obtains better quality of hand movement control.

3. RESULTS

In this paper, all the analyses were conducted under the environment of MATLAB 2014a. A preliminary analysis
was implemented to select effective features from the feature list we selected. Fig. (2) shows that the MAV and WPT
perform best for single features (75.85±2.58% and 75.12±3.22% respectively), regardless of the training time consumed
for WPT. Liner  combining the MAV and RMS yields a  more robust  result  than MAV and WPT. Interestingly,  the
accuracy  of  the  MEAN  features  extracted  from  ACC  is  86.6±2.59%  and  thus  significantly  higher  than  any  of  the
considered  sEMG  features.  Additionally,  Fig.  (3)  indicates  the  MEAN  feature  after  PCA  obtains  a  remarkable
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improvement  of  approximately  1%  (87.65±3.3%)  in  result  than  that  without  PCA.  Thus,  the  first  18  principle
components (PCs) have been used in the following experimental validation. The results in Fig. (4). illustrate the average
accuracy  using  either  sEMG,  or  a  combination  of  sEMG and  accelerometry,  compared  with  SVM,  LDA,  Random
forests and k-NN classifiers. The SVM with sEMG+ACC modalities performs the best accuracy of 88.72±2.58%, which
achieves a significant improvement of almost 13% over sEMG-only and roughly 1.1% over ACC-only. Subsequently,
the predicted labels produced by the test sequences of the subject 5 presented in Fig. (5) were compared with the true
labels.  Finally,  MER was  calculated  from both  sEMG and sEMG+ACC as  complementary  evaluation  criterion  for
window-based analysis (Table 3).

Fig. (2). Average classification results (a) with standard deviations and training time (b, roughly 7500 training samples) of 8 single
features and 2 multi-features for 5 amputated subjects. Performance is for an SVM before and after parameter adjustment.

Fig. (3). Comparisons of different numbers of principle components (PCs). Performance is for an SVM with MEAN feature/ACC
modality over 5 amputated subjects. The error bars indicate unit standard deviation.

Table 3. Average MER obtained from SVM with 3 major vote based sEMG modality and sEMG+ACC modalities over 5
amputated subjects.

Subject 1 2 3 4 5

MER
sEMG 2.913 5.753 3.280 3.260 3.130

sEMG+ACC 0.97 1.275 0.826 1.122 0.594

(a)                                          (b) 
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Fig. (4). Comparison of classification accuracy of sEMG/MAV and sEMG+ACC/MAV+ MEAN (PCA) for four classifiers. The
error bars indicate unit standard deviation.

Fig. (5). The true and predicted labels obtained from the test sequences of the 5th subject. The predicted labels were produced by the
MAV+MEAN (PCA) /sEMG+ACC for SVM classifier with 3 major vote.

4. DISCUSSION

4.1. Feature and Classifier

The results in Fig. (2). indicate that the more advanced WPT feature is not much superior to the simple RMS and
MAV, but suffering considerable computational consumption. Literature [3] also shows that MAV is a robust feature in
window-based analysis scheme, which has been successfully used in online myoelectric control [24]. Due to the data
segment technique, the non-stationary signal in a window gradually becomes stationary signal. Meanwhile, the LDA
classifier that was successfully employed to recognize 4 to 10 hand movements [20] achieves miserable results. In any
case,  Random Forests  and SVM performed very similarly for  the case only employing sEMG-based scheme. After
exploiting accelerometers, the non-liner SVM with RBF kernel is a more robust and discriminative classifier for high-
dimensional and multi-class features.
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4.2. Benefit of Accelerometers

The good performance of the sEMG+ACC confirms that ACC is indeed beneficial to multi-functional movement
window-based recognition. Table 4 presents a comparison between the results obtained through the approach proposed
in this work and the results obtained through other methods previously published in [8, 9, 24, 26, 27]. It is obvious that
our benchmark can recognize more movements when the accuracy is comparable with that in the literature. In addition,
we draw a conclusion that it is more effective to integrate ACC rather than increase the sEMG electrode roughly after
compared with [9]. Furthermore, the Movement error rates of 5 amputated subjects also obtain a remarkable decrease;
i.e. exploiting accelerometers also raises the quality of every intact movement. Fig. (3) gives a further insight into the
ACC modality that redundancy between electrodes influences movement classification. It was also mentioned in [23]
that the dense placement and regular orientation of the 12 electrodes caused information redundancy. Hence it is a wise
way  to  reduce  the  dimension  of  feature  and  eliminate  the  correlation  of  ACC  signal  using  PCA.  Although  ACC
performs  better  than  sEMG  on  movement  recognition,  it  cannot  replace  the  function  of  sEMG  on  detecting  the
onset/offset of movement and predicting the muscle force [25].

4.3. Evaluation of Error Labels

Given a general view on the error labels presented in Fig. (5), almost all the error labels occur near to the onset or
offset of individual movements. On the other hand, the experimental results point out that a major of these error labels
are misclassified as rest posture (label 0).To our knowledge, it can be explained as follows:

a) Due to the window-based analysis scheme, transitional segments between rest and movement would be produced
from test sequences. In reality, these segments obtained test signals and finally were classified as rest labels.

b) These error labels were usually ignored [9] or regarded as prediction delay [23], which was also called motion-
selection time in [10].

Table 4. Researches on hand movement classification in amputated subjects.

References Electrodes Classes Segmentation (ms) Features Classifier Accuracy (%) Number of amputee
[8] 2 4 2001/NM2 RMS FCMs3 87.5 1
[26] 6 5 NM NM SVM 95 2
[27] 6 8 100/NM CSSP4 LDA 80.3 1
[24] 8 7 250/505 MAV KNN 79 5
[9] 64 12 200/25 4TD6 MLP7 87.8 1
[10] 12 10 150/50 4TD LDA 84.4±7.2 5
This paper 12 18 250/25 MAV/sEMG+MEAN/ACC SVM 88.7±2.6 5

1 Window length; 2 Not mentioned; 3 Fuzzy C-means; 4 Common Spatio-Spectral Pattern; 5Increment of window; 6Time domain feature; 7 Feedforward
multi-layer perceptron.

CONCLUSION

A majority of studies have compared different approaches to develop myoelectric control of upper-limb prosthesis.
In this paper, we addressed this problem by classification of 17 functional movements on 5 amputated subjects. Our
approach achieves an average accuracy of 88.7±2.6% by combining sEMG and ACC modalities, which confirms that
our approach is appropriate for amputated subjects and ACC is an excellent complementary modality for myoelectric
control. Furthermore, principle component analysis was employed to reduce the dimension of feature and to eliminate
the  correlation  of  ACC  signal,  which  significantly  improved  the  classification  performance  and  reduced  MER.  In
conclusion,  the  approach  we  present  in  this  paper  boosts  the  capabilities  of  dexterous  myoelectric  hand  by  hand
amputated subjects.

ABBREVIATIONS

Abbreviation Details Abbreviation Surface details
sEMG Surface electromyography ACC Accelerometry
LDA Linear discriminant analysis ANN Artificial neural networks
SVM Support vector machine TRAS Trans-radial amputated subjects
PCA Principal component analysis NinaPro Non Invasive Adaptive Prosthetics
DASH Disability of the Arm, Shoulder and Hand  RMS A root-mean-square
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Abbreviation Details Abbreviation Surface details
MV The majority vote MAV Mean Absolute Value
MAV1 Modified Mean Absolute Value 1 VAR Variance
WL Waveform Length AR First four autoregressive coefficients
WPT Wavelet packet transform MEAN Mean value
k-NN k-nearest neighbors RF Random forests
RBF Radial basis function MER Movement error rate
PCs Principle components    
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