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Abstract: Intravascular ultrasound (IVUS) has become in the last years an important tool in both clinical and research ap-

plications. The detection of lumen and media-adventitia borders in IVUS images represents a first necessary step in the 

utilization of the IVUS data for the 3D reconstruction of human coronary arteries and the reliable quantitative assessment 

of the atherosclerotic lesions. To serve this goal, a fully automated technique for the detection of lumen and media-

adventitia boundaries has been developed. This comprises two different steps for contour initialization, one for each cor-

responding contour of interest, based on the results of texture analysis, and a procedure for approximating the initializa-

tion results with smooth continuous curves. A multilevel Discrete Wavelet Frames decomposition is used for texture 

analysis, whereas Radial Basis Function approximation is employed for producing smooth contours. The proposed 

method shows promising results compared to a previous approach for texture-based IVUS image analysis. 
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INTRODUCTION 

 Coronary angiography is acknowledged as the gold stan-
dard for imaging and diagnosis of coronary heart disease. 
However it is restricted by its inability to depict the vessel 
wall, provided that it illustrates the coronary arteries as a 
silhouette of the lumen. Thus, it fails to quantify plaque bur-
den, responsible for partial or total obstruction of the arter-
ies. Recently, intravascular ultrasound (IVUS) has been in-
troduced as a complementary to angiography diagnostic 
technique aiming to more accurate imaging of coronary athe-
rosclerosis [1, 2]. 

 IVUS is a catheter-based technique that renders two-
dimensional images of coronary arteries and therefore, pro-
vides information concerning luminal and wall area, plaque 
morphology and wall composition (Fig. 1). However, the 
quantitative evaluation of characteristic parameters such as 
luminal and wall area that is necessary for the clinical 
evaluation of the image data requires their segmentation ac-
cording to the actual structure of the coronary arteries. The 
wall of the latter mainly consists of three layers: intima, me-
dia and adventitia, while three regions are supposed to be 
visualized as distinguished fields in an IVUS image, namely 
the lumen, the vessel wall (consisted by the intima and the 
media layers) and the adventitia plus surroundings, as illus-
trated in (Fig. 1). The above regions are separated by two 
closed contours: the inner border, which corresponds to the 
lumen-wall interface, and the outer border representing the  
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boundary between media and adventitia. The reliable and 
quick detection of these two borders is the goal of analysis 
and also the basic step towards the subsequent 3D recon-
struction of the arteries, which can provide additional infor-
mation regarding the burden of atherosclerosis [3]. 

 This study presents an automated method for the segmen-
tation of IVUS images and specifically for the detection of 
luminal and medial-adventitial boundaries, based on the re-
sults of texture analysis, performed by means of a multilevel 
Discreet Wavelet Frames decomposition, and on a smooth-
ing step using Radial Basis Function (RBF) approximation. 
The proposed approach does not require manual initializa-
tion of the contours and shows promising results.  

RELATED WORK  

 Traditionally, the segmentation of IVUS images is per-
formed manually, which is a time consuming procedure with 
results affected by the high inter- and intra-user's variability. 
To overcome these limitations, several approaches for semi-
automated segmentation have been proposed in the literature. 
Sonka et al. implemented a knowledge-based graph search-
ing method incorporating a priori knowledge on coronary 
artery anatomy and a selected region of interest prior to the 
automatic border detection [4]. Quite a few variations of 
active contour model have been investigated. The active con-
tour principles have been used to allow the extraction of the 
borders in three dimensions after setting an initial contour in 
Kovalski et al's. approach [5]. However, the contour detec-
tion fails for low contrast interface regions such as the lumi-
nal border where the blood-wall interface in most images 
corresponds to weak pixel intensity variation. Klingensmith 
et al. use the frequency information to improve the active 
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surface segmentation algorithms after acquiring the radiofre-
quency (RF) IVUS data, for plaque characterization [6]. 

 For clinical practice the most attractive approaches are 
the fully automatic ones. A limited number of them has been 
developed so far. Brusseau et al. [7] exploited an automatic 
method for detecting the endoluminal border based on an 
active contour that evolves until it optimally separates re-
gions with different statistical properties. A fuzzy clustering 
algorithm for adaptive segmentation in IVUS images [8] is 
investigated by Filho et al. Giannoglou et al. propose in [9] 
an automated segmentation method based on a variant of the 
active contour model. Cardinal et al. present a 3D IVUS 
segmentation where Rayleigh probability density functions 
(PDFs) are applied for modeling the pixel gray value distri-
bution of the vessel wall structures [10]. An automated ap-
proach based on deformable models has been reported by 
Plissiti et al. [11], who employed a Hopfield neural network 
for the modification and minimization of an energy function 
as well as a priori vessel geometry knowledge. Unal et al. 
proposed in [12] a shape-driven approach to the segmenta-
tion of IVUS images, based on building a shape space using 
training data and consequently constraining the lumen and 
media-adventitia contours to a smooth, closed geometry in 
this space. 

IVUS IMAGE PREPROCESSING  

 Preprocessing of the image data for the purpose of apply-
ing a texture description method consists of two steps: (a) 
representation of the images in polar coordinates, and (b) 
removal of catheter-induced artifacts. 

 Representation of the images in polar coordinates is im-
portant for facilitating the description of local image regions 
in terms of their radial and tangential characteristics. It also 
facilitates a number of other detections steps, such as contour 
initialization and the smoothing of the obtained contour. To 
this end, each of the original IVUS images is transformed to 
a polar coordinate image where columns and rows corre-
spond to angle and distance from the center of the catheter, 
respectively, and this image alone, denoted   I (r , ) , is used 
throughout the analysis process. 

 The images produced by IVUS include not only tissue 
and blood regions but also the outer boundary of the catheter 
itself. The latter defines a dead zone of radius equal to that of 
the catheter, where no useful information is contained. 
Knowing the diameter  D  of the catheter, these catheter-
induced artifacts are easily removed by setting   I (r , ) = 0  
for   r < D / 2 + e ,  e  being a small constant. For the purpose 
of experimentation e  was set to 4; any other positive value 
that would be small enough so as not to result in the removal 
of parts of the wall area would suffice. This preprocessing is 
illustrated in Fig. (1).  

TEXTURE ANALYSIS 

 Texture has been shown to be an important cue for the 
analysis of generic images [13]. In this work, the Discrete 
Wavelet Frames (DWF) decomposition [14] is used for de-
tecting and characterizing texture properties in the neighbor-
hood of each pixel. This is a method similar to the Discrete 
Wavelet Transform (DWT) that uses a filter bank to decom-
pose the grayscale image to a set of subbands. The main dif-
ference between DWT and DWF is that in the latter the out-

put of the filter bank is not subsampled. The DWF approach 
has been proven to decrease the variability of the estimated 
texture features, thus improving pixel classification for the 
purpose of image segmentation. The employed filter bank is 
based on the lowpass Haar filter: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Original IVUS image (a) and corresponding polar coordi-

nate images before and after (b) the removal of catheter-induced 

artifacts. 

  
H (z) =

1

2
(1+ z 1)            (1) 

 Using this along with the complementary highpass filter 

  G(z) , defined as   G(z) = zH ( z
1
) , the fast iterative 
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scheme proposed in [14] for applying the DWF analysis in 

the two-dimensional space is realized. Then, according to the 

DWF theory, the texture of pixel  p  can be characterized by 

the standard deviations of all detail components, calculated 

in a neighborhood  F  of pixel   p.  The images resulting from 

treating each calculated standard deviation as intensity value 

of pixel  p  are denoted as 
  
I

k ,
k = 1,..., K . In the proposed 

approach, a DWF decomposition of four levels is employed, 

resulting in   K = 12  such images, in addition to an approxi-

mation component, which is a low-pass filtered image de-

noted 
 
I

LL
. However, not all of these images are used for the 

localization of the contours, as discussed in the sequel.  

CONTOUR INITIALIZATION  

 Objective of the contour initialization procedure is the 
detection of pixels that are likely to belong to the lumen and 
media-adventitia boundaries. 

 Under the proposed approach, the initialization of the 
lumen boundary relies in the observation that the lumen and 
wall areas demonstrate different texture characteristics: the 
lumen area tends to be a low-intensity non-textured region, 
with noise being responsible for any high-intensity artifacts 
in it, whereas the wall area is typically characterized by the 
presence of both low-intensity and high-intensity parts, with 
changes between the two that are of relatively low-frequency 
in the tangential direction and of somewhat higher frequency 
in the radial direction. Consequently, the local energy of the 
signal in appropriate frequency sub-bands can be used as a 
criterion for differentiating between the lumen and wall ar-
eas; to this end, the results of texture analysis discussed in 
section Texture Analysis are employed.  

 For the initialization of the media-adventitia boundary, 
on the other hand, the approximation component of the DWF 
decomposition is employed. The motivation behind this 
choice lies in the observation that in many cases the latter is 
represented by a thick bright ring (a thick bright curve in 
polar coordinates) that is dominant in the image. Thus, in the 
approximation component, the media-adventitia boundary is 
rather well preserved, as opposed to higher-frequency details 
that are suppressed by the low-pass filtering, facilitating con-
tour initialization.  

 More specifically, let 
  
I

int
, 

 
I

ext
 denote the simplified 

images, after texture analysis, which are used for detecting 

the lumen and media-adventitia boundaries respectively. 

These are defined under the proposed approach as 

  

I
int

(r, ) =
255

max
(r , )

{I
int

' (r, )}
I

int

' (r, )           (2) 

  

I
int

' (r, ) =
k
(r, )

k

           (3) 

  
I

ext
(r, ) = I

LL
(r, )            (4) 

 The choice of the images 
 k

 that are employed in this 

initialization process was done based on visual evaluation of 

all  K  generated images and is in line with the aforemen-

tioned observations regarding the texture properties of the 

lumen and wall areas, in combination with the characteristics 

of the filter bank used for the generation of images 
 k

 

The internal contour is initialized as the set of pixels 

  
c

int
= {p

int
= [ , ]}           (5) 

for which 

 int
( , ) >  and 

  int
(r, ) <  

 r <          (6) 

thus defining an internal contour function 
  
C

int
( ) =  (Fig. 

(2a)).  T  in the above equation is a threshold whose value 

was set experimentally to 128; small deviations from this 

value where shown to have little effect on the results of ini-

tialization. 

The external contour is initialized as the set of pixels: 

  
c

ext
= {p

ext
= [μ, ]}             (7) 

for which 

  
ext

(μ, ) = max
r> '

{I
ext

(r, )}           (8) 

where  [ ', ]  are the points of the final internal contour, as 

obtained by applying to the initialization data the refinement 

process of the following section. This defines a contour func-

tion 
  
C

ext
( ) = μ  for the external contour (Fig. (2b)). 

RBF-BASED CONTOUR REFINEMENT  

 In contrast to the initial contours generated as described 

in the previous section, which are not smooth and are charac-

terized by discontinuities (Fig. 2), the true lumen and media-

adventitia boundaries are smooth, continuous functions of 

. Consequently, in order to obtain smooth contours that are 

consistent with the true ones, the application of a filtering or 

approximation procedure to the initial contour functions 

  
C

int
( ) , 

  
C

ext
( )  is required. In this work, RBFs [15] are 

used to this end.  

 Polyharmonic RBFs have been proposed for reconstruct-
ing smooth, manifold surfaces from point-cloud data and for 
repairing incomplete meshes through interpolation methods 
and approximation techniques. Their use for the approxima-
tion of the initial contours in a frame, i.e. the generation of a 
contour   c '  that is a smooth, reasonable approximation of  c  
requires the definition for each such contour of a function 

 f , as follows:  

  f ( ,C( )) = 0              (9) 

where   C( )  here denotes either 
  
C

int
( )  or 

  
C

ext
( ) , de-

pending on the contour being examined. Function  f  is used 

for formulating the approximation problem as one of finding 

an RBF  s  for which   s(.) f (.) . To avoid the trivial solu-

tion of s  being zero at every point,  f  must also be defined 

for a set of points not belonging to the initial contour, so that 

  f ( ,r C( )) 0          (10) 
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The latter points are defined in this work as those which sat-
isfy the following equations: 

  
r = max{C( )}+ 1         (11) 

  
r = max{C( )} 1         (12) 

 For the above points in the 2D space, function  f  is de-
fined as the signed Euclidean distance from the initialized 
contour for  = const , i.e. 

  f ( ,r C( )) = r C( )         (13) 

 Following the definition of  f , the FastRBF library [16] 
was used to generate the smooth contour approximation   c '  
by removing duplicate points where f  has been defined (i.e. 

points in the 2D space which are located within a specific 
minimum distance from other input points), fitting of an 
RBF to this data and evaluating it to find the points which 
correspond to zero value; the latter define the contour ap-
proximation   c ' . 

EXPERIMENTAL RESULTS  

 The developed IVUS image analysis methodology was 
applied to a set of 40 images randomly selected from a pool 
of approximately 300 images belonging to 5 different human 
arterial segments; the 40 randomly selected images were 
segmented manually by experts to generate ground truth re-
sults. Similarly to [17], the arterial segments were captured 
using a mechanical imaging system and a 2.6F sheath-based 
catheter, incorporating a 40 MHz single-element transducer 
rotating at 1800 rpm and generating 30 images/sec. A motor-
ized pullback device was used to draw out the catheter at a 
constant speed of 0.5 mm/sec. The ultrasound data was re-
corded in a 0.5-inch S-VHS videotape. The S-VHS data was 
digitized by an integrated to the IVUS console frame grabber 
at 512x512 pixels with 8-bit grey scale in a rate of 7.5 im-
ages/sec and the end-diastolic images were selected (peak of 
R-wave on ECG). 

 Indicative results of the proposed approach on the em-
ployed dataset are presented in (Figs. 3 and 4), where the 
boundaries manually detected by a domain expert are also 
shown, along with results of our previous approach. Numeri-
cal comparison of the aforementioned methods, using pa-
rameter values that experts have defined and use for evaluat-
ing the results of IVUS (regardless of whether segmentation 
is performed manually or otherwise) and ground truth re-
sults, is shown in Table 1. 

DISCUSSION  

 The evaluation of the experimental results presented in 
the previous section documents the improved performance of 
the proposed approach as compared to our previous one in 
[17]. This improvement is due to the introduction of an 
elaborate contour refinement process based on RBFs for 
processing the results of contour initialization. 

 The aforementioned results also demonstrate the good 
agreement between the output of the proposed automated 
approach and that of manual segmentation, rendering prom-
ising the future exploitation of it in clinical practice. 

CONCLUSIONS  

 In this paper an automated approach for the detection of 
lumen and media-adventitia boundaries in IVUS images has 
been presented, based on the results of texture analysis and 
the use of RBFs. The experiments conducted by applying the 
developed technique to real data showed promising results 
and demonstrated the usefulness of this technique for IVUS 
image analysis. Future developments of this work include 
the combination of the texture features with other features 
reported in the related literature for contour initialization and 
the extensive evaluation of the technique.  
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Fig. (2). Results of contour initialization for (a) the lumen, (b) the 

media-adventitia boundary, and (c), (d) the corresponding contours 

after contour refinement. 
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Fig. (3). Indicative experimental results of the proposed approach (right column) and comparison with the results of [17] (middle column) and 

corresponding contours manually generated by experts (left column). 
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Fig. (4). Indicative experimental results of the proposed approach (right column) and comparison with the results of [17] (middle column) and 

corresponding contours manually generated by experts (left column), including images with calcification and guidewire artifacts. 
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Table 1. Average Error (%) for Vessel Area (VCSA), Lumen Area (LCSA) and Wall Area (WCSA) (see Fig. 1) Calculated from the 

Segmentation Results, Using the Method of [17] and the Proposed One. Ground Truth Values for VCSA, LCSA and 

WCSA have been Calculated Using the Results of Manual Segmentation by Experts 

Parameter/Method Method of [17] Proposed Approach 

Vessel area (VCSA) 7.51% 5.57%  

Lumen area (LCSA) 11.09% 8.95%  

Wall area (WCSA) 17.34% 10.81% 
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